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Preface

This book would probably never have seen the light of day if not for the COVID-19
pandemic of 2020—2021. I had been lecturing on mathematical logic long before that
and had written a series of lecture notes, initially distributed as hand-outs to students
and later made available online. I continuously had been editing, supplementing and
expanding the notes, but I had no intention of processing them into a book form.
After all, there are so many excellent textbooks on logic in general and mathematical
logic in particular... Nevertheless, I never used any single one of them as my primary
source, even though I drew inspiration from many. As a rule they were, to my taste,
too extensive or overloaded with technical details unnecessary for students who do
not intend to specialize in logic. This gave me the freedom to select topics based on
students’ interests and to modify my approach accordingly. Furthermore, I typically
taught the first-semester material in Slovak in the fall for students of the major
Mathematics, and in English in the spring, in a slightly simplified form with fewer
proofs, for students of Cognitive Science. The Slovak course continued in the spring
semester, whereas the English course spanned for just one semester.

However, COVID changed everything. I was taken aback by the (inevitably neg-
ative) impact of replacing in-person lectures with online teaching. To mitigate these
effects at least partially, I started preparing a structured text, divided into sections
corresponding as closely as possible to individual lectures, and kept up with them
on a weekly basis. I made the text available to students in electronic form as soon
as it was completed. Thus, during the spring of 2020, the first draft of this book
came to life. At the same time, I was writing an English version of the first part
of the course (dedicated to propositional logic, first-order logic, and Goédel’s incom-
pleteness theorems) and a Slovak version of the second part (covering selected topics
in model theory). During the fall of 2020 and spring of 2021, I mostly just revised
and expanded both parts. The decision to elaborate this series of materials into a
full-fledged book in two language mutations matured in me only in the fall of 2021.
At the same time, I conceived a conceited intention to distinguish my text from most
mathematically oriented logic textbooks by including two introductory chapters: one
on the subject and significance of logic and its position within the system of sciences,
and the other offering a brief historical overview of logic, presenting it as an integral
and indispensable part of human culture.

The content of this book bears the imprint of the circumstances of its creation.
Whether one regards this as an advantage or virtue out of necessity, the book’s scope
is deliberately limited, making it feasible to cover in a two-semester course. The
selection of topics, beyond the obligatory core material (propositional and predicate
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6 PREFACE

logic), reflects the interests and preferences of the author. Thus it should come as
no surprise that several important topics are not covered here. Just to name a few:
logical circuits, non-classical, modal, and many-valued logics, computability theory,
complexity theory, several areas of model theory, etc. However, as already mentioned,
“there are so many excellent textbooks on logic in general and mathematical logic in
particular...” Readers wishing to delve deeper into some of the topics omitted here,
will find plenty of resources to choose from. Some hints can be found in the biblio-
graphy, but they are by no means exhaustive.

Bratislava, September 2025
Pavol Zlatos



1 The Subject of Logic and its Position
within the System of Sciences

The word logic can take on different meanings depending on the context. These
meanings are related to each other, but they are certainly not identical. In a broad
and commonly used sense in everyday speech, logic is understood as something like
an internal structure, rather sensed than apparent, which, however, gives sense to
a given matter (issue), to interpretation of a set of phenomena, a particular field of
knowledge, or to an argumentation, or serves as a guarantee for it. Conversely, when
this structure is disrupted, this sense is lost, and its absence or denial turns it into
nonsense. This way, we often speak of the logic of things, the logic of law, the logic
of development, the logic of events, the logic of conflict, and so on. This meaning
is further refined in the context of scientific theories, particularly in their deductive
constituents. Here, logic merges with a set of methodological principles for building
such theories, which includes, among other things, the analysis of their fundamental
principles, methods of processing experimental data and facts, the formulation of
hypotheses, and methods of their verification.

In a somewhat more specific meaning, logic is a set of rules and principles of correct
thinking, reasoning, and inference that must be followed in these activities, and whose
observance ensures their correctness. Conversely, their violation serves as a warning
sign indicating errors in a given inference. However, it is important to note that
correctness is not the same as truth. A logically correct argument necessarily leads
to a true conclusion only if it starts from true premises. On the other hand, a true
conclusion can sometimes be reached through a logically correct argument based on
false premises, as well as through a logically flawed argument, regardless of the truth
of the initial premises.

Logic thus becomes a scientific discipline at the intersection of philosophy, the
methodology of science, linguistics, and (as it extensively employs mathematical meth-
ods and procedures) also mathematics, with important applications in law and, in
turn, in mathematics itself.

For the purposes of our course, however, we will understand logic in the following
even narrower sense:

Logic is a normative scientific discipline examining the form, structure, and
laws of correct (i.e., logical) thinking and reasoning, as they manifest in lan-
guage, whether spoken or written, while abstracting from the content of specific
thoughts and inferences.

This “slogan”, however, requires further explanation.

7



8 1 THE SUBJECT OF LOGIC AND ITS POSITION WITHIN THE SYSTEM OF SCIENCES

From experience, we know that thinking and reasoning can follow the paths of
reason as well as the paths of unreason, they can be fully logical, less logical, or
entirely illogical. This is evidenced, for example, by commonly used mocking or
even politically incorrect expressions such as female logic, military logic, or police
logic, and so on. However, if thinking is illogical, so much the worse for thinking.
Similarly, a faulty (illogical) inference does not disprove logic; rather, logic disproves
such an inference. Thus, the mission of logic is not to empirically describe the various
forms of thinking and reasoning but to establish and formulate norms that ensure
their correctness. We say that logic performs a normative function with respect to
language and thought.

The reader has surely noticed the presence of the adjective logical in our definition
of logic as a scientific discipline, which may have given rise to the feeling that we are
somewhat caught in a logical circle. Well, we do not intend to hide this. The author
openly admits that without a certain knowledge of logic, more precisely, without
the ability to think logically, logic cannot be explained or studied. He will therefore
assume that his readers or listeners already are capable to think and argue logically,
and he does not intend to teach them this but rather to require it of them. On the
other hand, the study of logic, which involves becoming aware of and reflecting on
the principles of logical thinking and reasoning, undoubtedly develops and cultivates
these abilities.

Let us pause for a moment to consider the relationship between logic and language.
Although thinking is probably not entirely exhausted by thinking in language — since
it also includes various images and nonverbal representations, vague intuitions and
insights, as well as moods and emotions —if we wish to share the content or results
of our thinking with others, we must find a way to express and communicate them.
The most effective communication tool at our disposal is our language, whether in its
spoken or written form. However, the communication in language requires us to give
linguistic form even to those components of our thinking that originally lacked it. Of
course, there is also the possibility of expressing oneself through music or visual arts,
through movement and dance, or through gestures and facial expressions, but in these
cases (with the exception of sign language), logic is of little help. Logic also falls short
when it comes to many forms of literary creation, especially, though not exclusively, to
poetry. However, when we engage in reasoning, where we derive conclusions through
logical argumentation based on certain accepted premises (again that vicious circle),
these processes take place fully, though not exclusively, in language (since in spoken
discourse, elements such as intonation, gestures, and facial expressions also play a
role) and fall within the domain of logic.

Finally, let us try to clarify what it actually means to abstract from the content of
particular thoughts and inferences and to focus exclusively on their form. Is some-
thing like that possible at all? The attempt to see in diverse phenomena their content
and form, and to separate one from the other, runs deep in the tradition of European
thought. Although to a great extent artificial, this approach has contributed signifi-
cantly to the successes of Western civilization in the domains of philosophy, science,
and ultimately also technology. This distinction namely allows us to conceptually
break down a perceived segment of reality into two components, each assigned a dif-
ferent function: content and form. By suppressing content, we obtain a considerably
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simplified, emptied form of a given phenomenon, which can be more easily subjected
to intellectual analysis. Moreover, such an abstract form may also appear in a differ-
ent domain of phenomena, allowing it to be filled with new content. This, in turn,
enables the transfer of knowledge gained in one domain to another. This contributes
to the universal character of European science and constitutes one of the foundational
pillars of reductionism, which is among the leading methodological principles of scien-
tific inquiry. It also facilitates the broad application of mathematical methods while
simultaneously providing incentives for further developments in mathematics itself.

The philosophical problem of the separability of form and content first emerges in a
developed form in ancient Greece in connection with classical geometry. Certain plane
or spatial figures capture our interest due to their shape, particularly its simplicity
and symmetry. These shapes were given specific names. In the plane, they include
the triangle (with various qualifiers such as equilateral, isosceles, right-angled), the
rectangle, and the square as its special case, as well as the circle, the regular pentagon,
the regular hexagon, and so on. In space, they are primarily the so-called Platonic
solids, namely the reqular tetrahedron, the cube, the octahedron, the dodecahedron,
and the icosahedron, as well as the sphere, the (quadrilateral) pyramid, etc. Many of
these shapes also prove to be useful and desirable in various fields of human activity:
in land surveying, in the construction of dwellings, temples, and palaces, in various
crafts, and so forth. At the same time, these shapes, and even more so when skillfully
combined, appeal to our aesthetic sense, playing an important role in visual arts
(painting and sculpture) and architecture.

Furthermore, human-made objects utilizing these shapes tend to be more perfected
the more precisely they succeed in achieving or imitating the given form. With the
pursuit of perfection there comes the realization that absolute perfection is, at least
for human creators, unattainable. Pure and perfect geometric shapes thus become
self-standing, independent entities, transforming into an unreachable ideal. Likewise,
geometry itself becomes an independent science devoted to the study of these idealized
forms. As this process unfolds, the list of ideal geometric shapes expands to include
objects even further removed from reality. Chief among these are points, conceived as
the smallest possible locations in a plane or space, devoid of any spatial extent, and
lines or segments, understood as perfectly straight paths without any thickness.

The interpretation presented above, according to which ideal geometric objects
are creations of human intellect and originate from experience and practical human
activity, followed in the spirit of Aristotle. However, it is also possible to adopt the
standpoint held by Plato, who argued that ideal geometric objects have an indepen-
dent existence and reside in an ideal geometric world (somewhere on the halfway
between the material world and the realm of pure ideas) which precedes the earthly
material world in its existence. Ideal geometric objects participate in real objects of
corresponding shapes, and the degree of this participation depends on how faithfully
a given material object imitates the corresponding ideal form. However, the purity of
an ideal geometric object in its earthy realization is always “tainted” by its material
content, and only, so to say, shines through or from behind it.

For the purposes of our course, it does not matter which of these two interpre-
tations we prefer. What is important is to recognize that ancient geometry demon-
strates the possibility of conceptually separating form from content in a broad class of
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phenomena. Furthermore, geometry, even in its original ancient form, and even more
so in its later developmental stages, serves as a compelling and undeniable evidence
in favor of the fertility and success of such an approach.

As we will have the opportunity to see several times, logic also allows for a similar
separation of form from content. Moreover, compared to geometry, this separation
is conceptually much simpler and does not pose analogous metaphysical problems.
This is made possible primarily through symbolic notation inspired by mathematics,
which provides a concrete representation of logical forms. Let us illustrate what we
mean by this with a simple example.

One of the well-known syllogisms is often illustrated with the following reasoning:

All men are mortal.
Socrates is a man.
Therefore, Socrates is mortal.

The first statement is commonly referred to as the major premise, the second as the
minor premise, and the third as the conclusion. Notice that the conclusion follows
from the premises with logical necessity. The validity of this reasoning is not based
on empirical proof of Socrates’ mortality, such as the execution of his death sentence
by drinking a cup of hemlock. The same form appears in the following reasoning, as
well:

All kings are horses.

Alexander the Great was a king.
Therefore, Alexander the Great was a horse.

However absurd, this reasoning is still logically valid, even though its conclusion is
obviously false. Another reasoning of a similar type

All kings are horses.
Alexzander the Great was a horse.
Therefore, Alezander the Great was a king.

is not logically valid, because its conclusion — although true —does not logically fol-
low from the premises. On the other hand, another absurd reasoning

All kings are horses.
Alexander the Great was not a horse.
Therefore, Alexander the Great was not a king.

is logically valid, even though its conclusion is false (as is one of its premises).
A similar nature can be observed in the following two logically valid inferences:

All Greeks are men.
All Athenians are Greeks.
Therefore, all Athenians are men.

or

All Spartans are brave warriors.
Some Greeks are Spartans.
Therefore, some Greeks are brave warriors.
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It would not be difficult to provide further examples of logically valid inferences that
follow the same patterns as the last two. However, their form only faintly shines from
behind of these individual examples. Understanding it is achieved through illustration
with a sufficient number of suitable examples. In Aristotle’s works, however, for the
first time in history, thanks to the use of subject-predicate variables, its explicit form
emerges, for example:

All M are P.
All'S are M.
Therefore, all S are P.

or alternatively,

All M are P.
Some S are M.
Therefore, some S are P.

The middle term M appears in both premises: in the first, it serves as the subject,
while in the second it functions as the predicate, and it is absent in the conclusion.
The term P appears in both the first premise and the conclusion, always playing the
role of the predicate; the term S is present in the second premise and the conclusion,
in both cases acting as the subject.

Similar forms appear in the logic of the Stoic school, where ordinal numerals take
on the role of propositional variables:

If the first, then the second.
But the first.
Therefore, the second.

or
If the first, then the second.
But not the second.
Therefore, not the first.

Using modern symbolic notation, which, however, developed only in the course
of the 19" and 20*" centuries, we can represent the forms of these inferences in
a fairly simple and clear way. Moreover, this allows us to distinguish the form of
the first two valid inferences about Socrates and Alexander from the form of the
inference about Greeks and Athenians. Let P(z), Q(x) and R(z) represent arbitrary
properties (predicates) of a variable object x, and a denote any specific object. Then
the following inferences are logically valid:

(Va)(P(z) = Q(x)) (Vz)(P(z) = Q(x))
P(a) —Q(a)

Therefore, Q(a) Therefore, - P(a)
(Va)(P(x) = Q(x)) (Vz)(P(z) = Q(x))
(Va)(R(z) = P(z)) (Ba)(P(x) A R(z))

Therefore,(Vz)(R(z) = Q(z)) Therefore,(3z)(Q(x) A R(x))
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Finally, let us clarify what we understand by the phrase mathematical logic. Logic
can be mathematical in two basic ways: through the methods it uses, and through its
subject matter. Logic can analyze various fragments of natural or artificial languages
that allow such an analysis. In this process, mathematical methods can be helpful
to varying degrees, such as symbolic representation of individual linguistic objects
or their classes, and modeling relationships between them using mathematical tools.
These tools usually facilitate processing using computational techniques. In this sense,
terms like formal logic or symbolic logic are often used. An example of this type of
logic is propositional calculus, with which our study of mathematical logic will begin.

The subject of logic can also be the languages of mathematical theories, the analysis
of their deductive structure, and the relationship between the symbolism used within
them and the meaning that the corresponding symbols may acquire. It is hardly
surprising that the languages of mathematical theories, thanks to their high degree of
precision and unambiguity, are particularly suitable for such an analysis. This type
of logic is then mathematical in its subject matter. It is also not surprising that
this logic heavily uses mathematical methods. Thus, it is mathematical logic both
in its methods and its subject matter. We will see that this “doubly mathematical”
logic not only provides a unifying perspective on various areas of mathematics but
also often enriches them with new methods and interesting mathematical insights.
Starting from the chapter on first-order logic, we will focus namely on this kind of
logic.

The notation and its structure in a symbolic language is scholarly called syntaz.
The assignment of meaning to symbols and their conglomerates is the subject of
semantics. The investigation of the relationship between syntax and semantics will
be both a key theme as well as a unifying element of our study of various branches of
mathematical logic in this course.



2 A Glance into History

We would like to warn the reader in advance that our brief overview of the history
of logic makes no claim to completeness, and the author is aware that any attempt
to do so would be futile. Our goals are much more modest: at least kaleidoscopically
present logic in its development as part of the still-living current of European culture
and education, originating from times long past and winding through human history
to the present day.

2.1 Antiquity

Logic—much like classical geometry —is one of the fruits of the Greek miracle.
Though some germs of logic can be found in the thinking of ancient China and India,
too, they did not come close to the level to which logic was elevated in ancient Greece.
The very word logic is derived from the Greek word logos (Aoyos), which means both
word and speech, but also order, as the opposite of chaos, or even the principle that
creates the world by breaking it free from chaos. In a similar sense, the word Word
is used in the opening verse of the Gospel of John, which bears a distinct Hellenistic
influence: In the beginning was the Word, and the Word was with God, and the Word
was God.

Logic, as an intentional part of human knowledge reflecting manifestations of hu-
man thinking in language, could not have arisen until thinking and language became
logical. In other words, logic had to first be constituted within language as an “in-
ternal structure, rather sensed than apparent, which, however, gives sense to a given
matter [...] or serves as a guarantee for it [...],” and only then could it be discovered
and gradually begin to take the form of a “normative scientific discipline examining
the form, structure, and laws of correct (i.e., logical) thinking and reasoning, as they
manifest in language, [...] abstracting from the content of specific thoughts and in-
ferences.” We can only speculate as to what contributed to the discovery of logic
in the first of the mentioned meanings and to the emergence of logic in the second
meaning. To what extent was it the political organization of democratic Greek polis,
the development of trade, legal systems, philosophy, and mathematics, within which
logical thinking and the art of argumentation were cultivated, but also the growing
respect for these skills and the demand for people proficient in them, capable, for
example, of representing parties in lawsuits or teaching others this art. It seems that
all of this played a part in the birth of logic. However, it would be naive to expect that
we can provide a sufficiently convincing explanation through purely rational reasons.

Those who dealt with teaching rhetoric as the art of speaking and argumentation
were called sophists, which roughly translates to teachers of wisdom. Sophists were
often hired as representatives in lawsuits. Their goal was generally to persuade their

13
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opponent of the correctness of their views. This led them to analyze language and
uncover its internal structure, which differentiates universally valid arguments from
others. Sophists thus discovered and used the law of contradiction, the law of the
excluded middle, and so on. However, the utilitarian nature of their profession caused
that their logic fell under the realm of eristics, which can be loosely translated as
the art of conducting a dispute. More important than searching for truth or the
correctness of judgments became refuting or at least questioning the arguments of
the opponent, as well as creating seemingly logically correct arguments that lead to
desired conclusions and are difficult to refute. Additionally, as a byproduct primarily
for the amusement of the audience, a variety of seemingly correct arguments called
sophisms emerged, leading to absurd conclusions. Some sophisms, however, took on
the character of paradozes, hinting at the limits of logic and conceptual understanding
of the world in language. Let us look at a few examples.

Sophism The Horned, attributed to Eubulides of Miletus (4" century BCE):

What you have not lost, you have.
You have not lost horns.
Therefore, you have horns.

The reasoning itself is logically correct. However, the first premise is obviously false,
and therefore, the conclusion is also false.

Sophism ascribed to the brothers Euthydemus and Dionysodorus (5*" century
BCE):

This dog is yours.
This dog is a father.
Therefore, your father is a dog.

Here, the mistake is less obvious. The words father and dog are used in two different
roles. They refer both to the properties of “being a father” or “being a dog”, and
to a specific person (your father) or a specific dog (this dog). The trick lies in the
fact that these dual roles are deliberately not distinguished. Let us denote F(z) as
the property “being a father”, D(z) as the property “being a dog”, and Y (z) as the
property “belonging to you” (i.e., to the recipient of the argument). Let f represent
your father and d represent this dog. The argument then takes the form:

Y (d)
F(d)
Therefore, D(f)

This reasoning is not logically valid because its premises (even if true) do not say
anything about the object f that appears in the conclusion. The argument cannot
be saved even by adding three additional true premises: F(f), Y(f), and D(d),
which are omitted in the argument, but psychologically expected. None of the given
premises establishes any relationship between the considered predicates F(z), D(x),
and Y (z).

The following sophism, attributed to perhaps the most famous of the sophists,
Protagoras of Abdera (cca 485—410 BCE), however, has no simple solution.
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The Paradox of Protagoras’ Student. A young man became a student of Pro-
tagoras. According to their agreement, he was to pay his teacher only after completing
his studies and winning his first lawsuit. The young man completed his studies but
did not engage in any legal disputes, and therefore, according to the agreement, he
did not pay his master. Eventually, Protagoras lost patience, demanded payment,
and threatened the student with a lawsuit. He explained: “The court will either rule
that you must pay or it will not. In the first case, you will have to pay based on the
court’s decision; in the second case, you will have to pay according to our agreement,
since you have won your first case.” However, the student, well-trained by Protagoras
himself, was not intimidated and responded: “I will not pay in either case. If the court
orders me to pay, then I have not won my first case, so according to our agreement,
I do not owe anything. If the court does not order me to pay, then I do not have to
pay based on the court’s ruling.”

The most famous sophism of all, however, is the Liar Paradoz, also known as
Epimenides’ Paradoz, again attributed to Eubulides. In this paradox, the Cretan
philosopher Epimenides makes the following statement:

“All Cretans are liars.”

We will examine this paradox in more detail in the chapter dedicated to Godel’s
incompleteness theorems.

Another source of logic, initially called dialectics, is Greek philosophy. Within it,
the view gradually emerges and prevails that the fundamental mission of philosophy is
to distinguish appearance from reality and to attain certain and indisputable knowl-
edge about the world. This primarily means understanding the order of the world
(logos), that is, what is stable and unchanging in it. Individual phenomena and things,
on the other hand, are variable, temporary, and unstable. Therefore, one must pene-
trate through phenomena to their substances, and, uncover, behind the changes, the
laws governing them, and then, in turn, explain the changes they undergo. However,
the source of such knowledge cannot be the senses, which often deceive us, nor our
everyday experience. Although experience may inspire our reasoning, we can reach
true knowledge only through thought and reason.

This tendency is already evident in pre-Socratic philosophy, particularly in Par-
menides (cca 540—470 BCE) and his followers, members of the school he founded in
the city of Elea in southern Italy. Parmenides describes the world as a single, un-
changing, and eternal entity, which he calls Being or the One. This Being is, because
Being cannot not be, and there is only One, whereas Non-Being is not. With all due
respect, to a modern reader, this whole argument appears like an inflated bundle of
tautologies, making it difficult to take seriously.

To support his master’s teachings, Parmenides’ student Zeno (cca 490—430 BCE)
developed a sophisticated system of arguments, known as Zeno’s paradozes, which
demonstrate the impossibility of motion. Zeno always assumes that motion occurs
and, based on this assumption (along with additional premises, which we will point
out later), arrives at a contradiction in the form of an absurd consequence, from which
he concludes that motion is impossible. We should recognize that this conclusion con-
tradicts common experience, so its persuasiveness relies solely on the irrefutability of
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the logical arguments used. This is likely the oldest recorded example of argumen-
tation of this kind. Moreover, by insistently pointing out the contradictions in the
conceptual grasp of motion, Zeno’s paradoxes present a permanent challenge to the
sciences born in the spirit of antiquity —mathematics, physics, and philosophy in
particular — which has not lost its relevance over time. Ultimately, let the readers
judge for themselves.

Dichotomy. There is no motion because whatever moves must first reach the halfway
point before reaching the end. But before reaching halfway, it must first reach the
halfway point of that halfway, and so on. Thus, motion can never even begin.

Achilles and the Tortoise. Achilles, the fastest of men, can never catch up with
a tortoise, the slowest of creatures, if the tortoise starts ahead of him. The pursuer
must first reach the point where the fugitive started, then the point where the fugitive
was when the pursuer reached the starting point, and so on. Thus, the slow tortoise
will always remain a certain distance ahead of the swift-footed Achilles.

The Flying Arrow. Suppose that at every moment, everything is at its own place
and is either at rest or in motion. If the flying arrow is at a specific place at every
moment, then at each individual moment, it is motionless and therefore cannot move.
If it were moving at any given moment, it would not be at that place at that moment,
meaning it would not be anywhere at all.

The Stadium. Imagine two rows, each consisting of the same number of objects of
equal size, moving in opposite directions along the track of a stadium at the same
speed. If we assume that motion occurs through changes in position by equal, indi-
visible spatial units in equally short, indivisible time units, then in the moment when
the first row moves one unit relative to the stadium, the second row also moves one
unit relative to the stadium, but in the opposite direction. Thus, one row moves by
two units relative to the other in the same time. This means that two spatial units
equal one unit, and two time units equal one such unit.

Note that in the first two paradoxes, Zeno assumes the infinite divisibility of space
and time, while in the latter two, he assumes the opposite, namely, that space and time
consist of smallest, indivisible parts (though this assumption is explicitly stated only
in The Stadium). While the first and third paradoxes demonstrate the impossibility
of absolute motion, the second and fourth refute the possibility of relative motion.

Unlike the sophists, who primarily viewed logic as eristics, i.e., the art of argu-
mentation aimed at refuting an opponent’s standpoint, another approach developed,
known as dialectical logic, which focused on conducting dialogue with the shared goal
of seeking the truth. The unsurpassed master of this art was Socrates (469—-399 BCE),
one of the most influential figures in Western thought, emerging at its very dawn. In
the Socratic dialogues, as presented to us by Socrates’ student Plato (427—348 BCE),
the search typically begins with a question posed by Socrates or one of his guests, who
often include a recognized expert on the given topic. The initial answer usually aligns
with commonly accepted opinion. Socrates then demands a more detailed explana-
tion and requests clear definitions of the terms used. As he continues questioning,
the respondent often arrives at a position that contradicts his original stance. If the



2.1 ANTIQUITY 17

group reaches a consensus and adopts this new view, Socrates once again challenges
it with further questions. This pattern repeats multiple times. Occasionally, partici-
pants feel they are approaching the truth, but more often, they realize they are merely
deepening their awareness of their own ignorance —the ignorance to which Socrates
himself openly admitted from the outset.

The first Greek philosophical school focused on logic arose in the Greek city of
Megara, halfway between Athens and Corinth. Its founder, Euclid of Megara (cca
435-365 BCE), often confused with Euclid of Alexandria (around 300 BCE) the
author of the Elements, was a student of Socrates and an admirer of Zeno. Among
its members was the aforementioned Eubulides of Miletus, known for several famous
sophisms and paradoxes. Closely associated with it was the so-called Dialectical
School, represented by Diodorus Cronus (?—cca 284 BCE) and Philon of Megara (34
century BCE). The works of the Megarians and Dialecticians have not survived; we
know of them only indirectly through the writings of other authors, such as Plato’s
dialogue Theaetetus, which is believed to have been originally authored by Euclid.
It is known that the Megarians enriched eristics by developing a method of deriving
absurd conclusions from statements they sought to question or refute. Philon is also
credited for having arrived at a conception of implication coinciding with the modern
one.

However, the foundations of logic as a scientific discipline were laid by Aristotle
of Stagira (384—322 BCE) in his five-volume work, collectively referred to since the
Middle Ages as the Organon (i.e., The Instrument). The contents of its individual
parts can be summarized, in a simplified manner, as follows:

Categories introduce a classification of simple concepts (nouns), which can serve as
subjects or predicates in statements, into ten types (categories).

On Interpretation analyzes categorical statements in terms of their fundamental logi-
cal structure, including negation, opposition, conversion, and quantitative attributes.
Using subject-predicate variables, it provides an initial “combinatorial analysis” of
possible types of categorical syllogisms. This work also includes discussions on pos-
sibility, contingency, necessity, as well as the validity of statements about the future,
marking the beginnings of modal and temporal logic.

Prior Analytics provides a formal analysis of the conditions that guarantee the cor-
rectness of logically valid inferences (categorical syllogisms).

Posterior Analytics deals with proofs of statements, definitions of concepts, and the
classification of scientific knowledge. While Prior Analytics focuses on the formal
aspect of syllogistic logic, Posterior Analytics examines logical reasoning primarily in
terms of its content. It distinguishes between apodictic syllogisms, whose premises
are certain and true, thus leading to true and certain conclusions, and dialectical
syllogisms, whose premises and conclusions are uncertain.

Topics explore dialectical proofs in greater depth and seek to establish their degree of
reliability. Syllogisms that create a deceptive impression of validity, either in form or
content, are called sophistical. The appendix On Sophistical Refutations (often con-
sidered a separate sixth volume) is dedicated to uncovering and critiquing the errors
concealed within such arguments. It classifies thirteen types of fallacious reasoning.
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From the perspective of our course, the most important aspect is the study of
categorical syllogisms, which permeates the entire Organon. A categorical syllogism
is defined at the beginning of Topics as “a discourse (logos) in which, if something
is given, something different from what is given follows necessarily from the fact that
it is given.” Even though, from today’s perspective, Aristotle’s theory of categorical
syllogisms represents only a fragment of first-order monadic logic (i.e., the logic of
unary predicates), the tendency, emerging from time to time since the early 20th
century, to dismiss it as trivial is merely evidence of a failure to understand and
appreciate the epochal significance of the step taken by this great ancient thinker and
polymath as the very first.

Aristotle’s work was continued by his followers, the members of the Peripatetic
school, which he founded. They expanded his syllogistic logic, for example, by study-
ing forms of hypothetical reasoning. The most notable among them were Theophrastus
of Eresus on Lesbos (cca 372-287 BCE), considered the founder of botany and den-
drology, and Eudemus of Rhodes (cca 370-300 BCE), known both as an editor of
Aristotle’s works and as a historian of Greek mathematics and astronomy.

Aristotle and the Peripatetics also influenced the Stoic school, which was active in
Cyprus and whose most prominent figures were Zeno of Citium (cca 334 -262 BCE)
and Chrysippus of Soli (282—-206 BCE). Although Stoicism is primarily a philoso-
phy of moral principles and life attitudes (consider, for example, the proverbial Stoic
calm), Stoic thinkers made a significant contribution to the development of logic as
well. While Aristotelian logic is primarily concerned with analyzing the relationship
of inference between subject-predicate statements, Stoic logic laid the foundations of
propositional logic. A proposition is understood as a meaningful statement that is
either true or false. New propositions can be formed from given ones using logical
connectives, such as negation, conjunction, disjunction (understood in the exclusive
sense), and implication. Namely implication played a fundamental role in Stoic logic
and was understood (like in Philon’s work) in the same way as today: the proposition
A = B is false only if its antecedent A is true and its consequent B is false. Addition-
ally, Stoic logic also considered implication (inference) in the sense of a valid argument,
i.e., an argument in which a conclusion is logically derived from true premises, thereby
guaranteeing its truth. The Stoics discovered and systematized several inference rules,
which they formulated using ordinal numerals in the role of propositional variables.
For illustration, here are four examples, named as they were in the Middle Ages,
written in modern notation for clarity:

from A = B and A derive B (modus ponens)
from A = B and —B derive =4 (modus tollens)
from —~(A A B) and A derive =B (modus ponendo tollens)
from (AA B) = C, A and -C derive =B (antilogism rule)

Using their deductive system, the Stoics also analyzed well-known ancient paradoxes
and discovered or created many others. Little has survived from the original writings
of the Greek Stoic school; most of what we know about them comes from Diogenes
Laertius’ (cca 180—240 AD) work Lives and Opinions of Eminent Greek Philosophers,
written in the 3rd century AD. However, the Stoic school found continuity in ancient
Rome. Among its adherents were Lucius Annaeus Seneca (4 BC—-65 AD), Marcus
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Aurelius (121-180 AD), and, to some extent, Marcus Tullius Cicero (106—43 BC).
However, logic was no longer at the center of their interests.

Aristotle’s syllogistic logic and the Stoic propositional logic were significantly en-
riched by the famous ancient physician and anatomist Galen (cca 130—200 AD).
In his Introduction to Logic, Galen distinguished between exclusive disjunction (ei-
ther...or...) and non-exclusive alternative (...or...), as well as between implication
and bi-implication (equivalence). He also studied the interchangeability (i.e., logical
equivalence) of statements formulated in different ways, thereby anticipating the con-
cept of tautology. Additionally, he introduced early elements of the logic of binary
predicates (relations), examining the possibility of inversion and the symmetry prop-
erty. In logical reasoning, he also allowed premises formed by a conjunction of several
simple assumptions. He applied his logical knowledge, for example, in his analyses of
anatomical descriptions and medical treatments.

However, logic in antiquity did not develop solely within the framework of ancient
philosophy, from which it gradually became independent. An equally important con-
tribution to logic came from Greek mathematics, where the art of argumentation was
developed and refined in a fundamental way. The pinnacle of this is Euclid of Alexan-
dria’s thirteen-volume work Elements (X Touxeta), written around the turn of the 4*%
and 3" centuries BC. This work systematically compiles and explains the mathemat-
ical knowledge of the time, covering plane and solid geometry as well as arithmetic.
Especially the first six books, dedicated to plane geometry, became the model for
construction of any deductive theory aspiring to exactness for many centuries.

Euclid begins with twenty-three definitions of basic concepts (point, line, straight
line, angle, circle, etc.), relying on geometric intuition, sharpened by the view of the
ideal geometric world. He then establishes five postulates. The first three postulates
can be understood as instructions for solving basic constructive tasks (drawing a
straight line connecting two points, extending a given segment indefinitely, and draw-
ing a circle with a given center and radius). The other two postulates are more of
axiomatic nature: all right angles are equal, and the famous fifth postulate states that
two lines, when intersected by a third line, will meet on that side where the sum of
their angles with the transversal is less than two right angles. He then presents nine
azioms, which serve as self-evident principles or simple methodological rules (e.g.,
things equal to the same thing are equal to each other; if equals are added to equals,
the results are equal; the whole is greater than the part, etc.). From these basic con-
cepts and premises, Euclid rigorously logically derives further propositions. However,
the logic of the FElements is not an independent discipline but rather a masterfully
employed, albeit only implicitly specified, tool. This logic does not replace geometric
intuition but rather builds upon, serves, supports, complements, and extends it.

It is widely accepted that Euclid was familiar with Aristotle’s works, including his
syllogistic logic, as well as Stoic logical writings. However, he does not explicitly refer
to them in his Elements. On the other hand, the logic he employs is noticeably richer
than both Aristotelian and Stoic logic: upon a retrospective view, it can be regarded
as a substantial fragment of first-order logic, unrestricted to unary predicates.

Euclid’s Elements profoundly influenced and inspired scholars such as Nicolaus
Copernicus (1473 -1543), Galileo Galilei (1564 —1642), Johannes Kepler (1571 —1630),
René Descartes (1596 —-1650), and Isaac Newton (1643—1727). Euclid’s axiomatic
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method also served as a model for Baruch Spinoza (1632-1677) in his most sig-
nificant philosophical work, Ethica ordine geometrico demonstrata, where he derives
metaphysical, theological, and ethical conclusions from definitions and axioms stated
in advance. After the Bible, Flements is the most translated and published book of
all time.

Our gallery of ancient logicians concludes with the early Christian Roman philoso-
pher Anicius Manlius Severinus Boethius (cca 480—524 AD). Boethius introduced
medieval Europe to the intellectual achievements of ancient philosophy by translating
works of Plato, Aristotle, and other Greek philosophers into Latin. He also wrote
detailed commentaries on several of them, including Aristotle’s logical writings. He
contributed to logic through his own works, especially On the Categorical Syllogism
and On the Hypothetical Syllogism, in which he attempted to synthesize Aristotle’s
categorical syllogistic with Stoic propositional logic. He also provided a detailed
combinatorial classification of the formal structures of different types of reasoning.
His logic, based on the structural analysis of the Latin language, significantly influ-
enced medieval thought and laid the foundation for the impact of Aristotle’s work on
Scholastic philosophy and logic.

2.2 The Middle Ages

Logic in the Middle Ages was cultivated as one of the seven liberal arts. These included
the so called trivium, i.e., the three verbal arts [grammar, rhetoric, and logic (associ-
ated with philosophy and also called dialectics)] and the so called quadrivium, i.e., the
four numerical arts [arithmetic, geometry, astronomy (together with astrology), and
music (including the study of proportions and harmony)]. From this classification,
it is evident that medieval logic was separate from mathematics and did not become
closely connected with it.

The development of medieval logic can be divided into three periods. The first
period, also called old logic (logica vetus), extends from the end of antiquity to ap-
proximately the middle of the 12" century. During this period, access to ancient
sources was limited to two works by Aristotle (Categories and On Interpretation)
along with the corresponding commentaries by Boethius. The most significant rep-
resentative of “old logic” was the French scholastic philosopher, logician, theologian,
poet, and composer Pierre Abélard (1079-1142).

The second period, known as new logic (logica nova), lasted approximately from the
middle of the 12t century to the end of the 13" century. During this time, Aristotle’s
entire body of work, along with other ancient sources, was studied and commented
upon. A combinatorial classification of categorical syllogisms and rules of proposi-
tional logic was completed. Considerable attention was devoted to issues of modal
and temporal logic. Several logic textbooks appeared, leading to the establishment
of something like their canonical form. Among the most significant representatives
of “new logic” were the church scholars Albert the Great (cca 1193—1280), Peter of
Spain (1205—-1277), John Duns Scotus (1265/6—1308), and others.

The third period, called modern logic (logica modernorum), spans approximately
the entire 14*" and 15*" centuries. It is characterized mainly by the further refinement
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and systematization of the methods and results of the previous period and their
application in the analysis of medieval Latin. Ancient paradoxes were also studied,
and attempts were made to resolve them, while new paradoxes emerged on the way.
Among the most significant representatives of modern logic were William of Ockham
(1287-1347), Jean Buridan (cca 1300-1360), Albert of Saxony (1320—1390), Paolo
Venetus (1369 1429), and their students.

Alongside its development as an independent discipline, logic in the Middle Ages
was also refined in philosophical and theological debates and disputes. Typical ques-
tions addressed in these discussions included the relationship between predestination
and free will, as well as related issues such as human responsibility for one’s actions
and the ability to influence one’s own salvation through deeds. Another key issue was
the logical compatibility of divine attributes (e.g., it was known that God’s omni-
science and omnipotence contradict each other), and the possibility of proving God’s
existence by logical means from purely rational principles. Further debated questions
included the problem of how a benevolent, merciful, and omnipotent God could allow
the existence of evil in the world He created, and where was God and what was He
doing before the creation of the world. Logic also played a crucial role in the meta-
physical dispute between realism and nominalism regarding the nature of universals.
Realism held that universals (general concepts denoting ideas, properties, and rela-
tions, such as goodness, evil, beauty, friendship, greatness, etc.) have an independent,
real existence. In contrast, nominalism asserted that universals are merely names or
labels for certain abstract ideas, properties, and relations, without corresponding to
independently existing real objects. It is hardly surprising that none of these problems
were ever resolved to general satisfaction.

In contrast to the creative contributions of all-round educated medieval scholars to
the development of logic and their brilliant disputations, the teaching of logic in the
Middle Ages and for a long time afterward stood in stark opposition. It was largely
reduced to the memorization of derivation rules and categorical syllogisms, thereby
negating its very purpose, which should have been the cultivation of logical thinking.
Paradoxically, the most famous and widespread results of medieval logic became vari-
ous mnemonic aids: the logical square, also known as the square of oppositions, which
connects four types of subject-predicate judgments, and the mnemonic codes for the
nineteen syllogisms divided into four figures (I: Barbara, Celarent, Darii, Ferio; II:
Cesare, Camestres, Festino, Baroco; III: Darapti, Disamis, Datisi, Felapton, Bocardo,
Ferison; IV: Bramalip, Camenes, Dimaris, Fesapo, Fresison).

Exercise. Search online for information about the logical square, the four basic
figures of categorical syllogisms, and the mnemonic codes for individual syllogisms.
Based on the significance of the vowel codes a, €, i, o, reconstruct the verbal form of
the syllogisms corresponding to the given 19 codes and write them using both medieval
and modern notation. For example, the syllogism Ferio has the verbal expression:

no M is P, and some S are M, therefore some S are not P
And in medieval and modern notation, respectively, it appears as follows:
from MeP and SiM derive SoP
from (Vz)(M(z) = —P(x)) and (3z)(S(xz) A M(x)) derive (3x)(S(x) A -~P(x))
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Also, uncover the meaning of the initial letters B, C, D, F and the consonants m, p,
r, s in the names of the individual codes (they contain instructions on how each code
of the second to fourth figures can be derived from the corresponding code of the first
figure).

2.3 Renaissance and Modern Era

Renaissance thought took a highly critical stance toward scholasticism and medieval
Aristotelianism. Speculative philosophy and theology lost their prominence, while
the focus shifted to the observation of nature and experimentation. A growing effort
emerged, especially represented by Galileo Galilei, to explain natural phenomena and
processes in a causal manner, uncover their laws—not only their qualitative but
also their quantitative aspects—and describe them in the language of mathematics.
In this intellectual atmosphere, medieval logic was, at least for a time, viewed with
disdain as fruitless speculation and endless repetition of trivial rules.

A shift in perspective came with the modern era, particularly with René Descartes,
who recognized the crucial methodological role of logic in rationalist philosophy. This
is evident in his works Discourse on the Method (1637) and Rules for the Direction of
the Mind (written in 1628 but published only in 1701). Descartes’ Discourse and his
Rules, along with the views of Blaise Pascal (1623 —1662), significantly influenced An-
toine Arnauld (1612—1694) and Pierre Nicole (1625—1695) in writing their textbook
Logic, or the Art of Thinking (first published anonymously in Paris in 1662), better
known as The Port-Royal Logic, named after the monastery Port-Royal de Champs,
where its authors worked. Aristotelian logic, as it had developed in the late Middle
Ages, is presented in the book in the spirit of Cartesian dualism. Accordingly, the
material is presented verbally, without the use of symbolic notation. In semantics, the
authors distinguish between the content (intension) and the extension of a concept.
At the same time, they introduce a psychological perspective into logic, seeing its
purpose not in itself but in its Enlightenment-inspired role of helping to promote rea-
son and justice in the world. The book was translated into several languages within
a relatively short time. Until the 19" century, it remained the most published logic
textbook in HOWEVER both the Old and New Worlds.

A special place in our story is occupied by the prominent polyhistor (mathemati-
cian, philosopher, and diplomat), Gottfried Wilhelm Leibniz (1646—-1716). As a
mathematician, Leibniz is known (alongside Newton) primarily as one of the creators
of the infinitesimal calculus. His approach was based on the use of infinitely small
(and infinitely large) quantities; the notation he introduced, % for the derivative and
J f(z)dx for the integral, is still in use today. Leibniz also corresponded with the
aforementioned Arnauld. His aptitude for working with symbols was evident in his
design of a logical notation, which, however, was not published during his lifetime.
By the time it was eventually made public at the turn of the 19*" and 20*" centuries,
it had already been surpassed, so it neither influenced previous developments nor
shaped further progress.

Nevertheless, Leibniz influenced the development of European thought, particu-
larly in logic, through his vision, which built upon the ideas of the Catalan medieval
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mystic Ramén Llull (1232—1316). Llull created a system of tables and diagrams
known as Ars Magna, which aimed to gather universal foundational principles of cog-
nition in symbolic form and, through mechanical combinations following logical rules,
derive further (potentially all) knowledge. Within this framework, it was expected
that even Christian theological dogmas could be proven beyond any doubt. Leib-
niz shared Llull’s idea of discovering truths exhaustively by generating propositions
through suitable combinations of concepts. His treatise De arte combinatoria (1666)
outlines this “project”. Similar projects were ruthlessly parodied by Jonathan Swift
(1667 —1745) in the third book of Gulliver’s Travels (1726), in a scene depicting Gul-
liver’s visit to the Grand Academy of Lagado.

Later on, Leibniz conceived the idea of developing a universal characteristic lan-
guage (lingua characteristica universalis), in which fundamental concepts would be
represented by numbers or other characteristic symbols, while more complex concepts
would be represented by chains of symbols corresponding to the simpler concepts from
which they were composed. The resulting graphical formations were intended to be
easily comprehensible to readers regardless of the language they spoke. He drew
inspiration from Egyptian hieroglyphs and Chinese pictographic writing, as well as
from the algebraic notation introduced by the French mathematician Francois Viete
(1540-1603). Furthermore, he aimed to develop the so-called calculus ratiocinator, a
universal “rational calculus” that would allow calculations with concepts and propo-
sitions formulated using the symbols of the universal characteristic language. He also
envisioned the ars iudicandi, a method by which it would be possible to determine
the truth or falsehood of any proposition expressed in this symbolic system.

The goals pursued by Leibniz are anything but modest. The advancement of all
sciences, including mathematics, would be just one, and not even the most important
consequence. All controversies and quarrels between individuals, as well as conflicts
and wars between nations would cease. Even if disagreements or differences of opin-
ion arose, it would suffice to sit down together and calculate. This way, it would
quickly become clear who is right, and this with undeniable clarity and persuasive-
ness recognized truth would naturally be accepted and respected by all. Humanity
could gradually discover, and eventually exhaust, all truths. Among these, the most
prominent would be the Truth of God’s existence and the true religion, “which most
closely aligns with reason, and from which people in the future would be as unlikely to
stray as they are to turn away from arithmetic and geometry once they have learned
them.”

However naive and utopian Leibniz’s hopes may seem to us today, the grandeur of
his project cannot be denied. As for the methods, his genius was nearly three centuries
ahead of his time and precisely anticipated the directions of further development in
mathematical logic: propositional and predicate calculus, Godel’s arithmetization of
metamathematics, as well as the symbolic representation of data and knowledge used
in computer implementation and processing. And when we realize how far we still
are — despite all scientific and technological progress — from fulfilling Leibniz’s dream
of eternal peace, it is hard to resist a feeling of futility, despair, and disappointment
in the unteachable and incorrigible human race.

In the 18" century, several scholars engaged in the study of logic, whose scientific
and philosophical interests, like those of Leibniz, had a significantly broader scope.
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For all of them, we should mention at least the Alsace born German mathematician,
astronomer, physicist, and philosopher Johann Heinrich Lambert (1728 -1777). Lam-
bert was the first to prove the irrationality of the number 7, and with his study Theory
of Parallel Lines (1766), he became one of the forerunners of non-Euclidean geometry.
His works Photometria (1760) and Pyrometria (1779) represent important contribu-
tions to the theory of light and heat, respectively. His main philosophical work, New
Organon (1764), provided a profound analysis of numerous issues concerning, among
other things, formal logic, probability, and the methodology of science. Along with the
English mathematician, astronomer, and scientific instrument maker Thomas Wright
(1711-1786) and the German philosopher Immanuel Kant (1724 —1804), with whom
he corresponded, he was among the first to recognize that the spiral nebulae visible
through astronomical telescopes in the night sky are star-formed galaxies of a disk-like
shape, similar to our Milky Way.

On the other hand, it was Kant who, in his most influential philosophical work,
Critique of Pure Reason (Kritik der reinen Vernunft, 1781), put forward the idea
that logic was practically a completed discipline, to which nothing essential could
be added. Considering how little progress logic had made until then since the time
of Aristotle, one cannot wonder too much about that. However, within about half
a century, it became clear that this was a fatal mistake. And it was not the only
Kant’s mistake, one that —supported by his unquestionably well-earned authority —
temporarily slowed the natural development of science. Even a better-known example
is Kant’s thesis on the absolute character of space and time as pure a priori forms
of our intuition, beyond which sensory perception and knowledge are impossible.
According to Kant, this space is identical with the space of Euclidean geometry, and
no other type of space is even conceivable. This thesis was likely one of the reasons
why Carl Friedrich Gauss (1777 —1855), one of the greatest mathematicians of all time,
hesitated to publish his discoveries regarding non-Euclidean geometry. However, by
then, the time had come for non-Euclidean geometry to see the light of day.

2.4 Non-Euclidean Geometry

Non-Euclidean geometry played a remarkable and not fully appreciated role in the
development of logic. Its emergence is attributed to the already mentioned fifth
postulate of Euclid, which is most commonly stated as follows:

Through a given point not on a given line, exactly one parallel can be drawn
to the given line.

This formulation was presented by the Neoplatonist philosopher Proclus of Lycia
(cca 410-485 CE) in his Commentary on Euclid. The same wording is also found
in the works of the English cleric and mathematician William Ludlam (1717 -1788);
however, it is named after the Scottish natural scientist and mathematician John
Playfair (1748-1819), who included it in his work Elements of Geometry (1795).
Playfair’s axiom is entirely consistent with geometric intuition, yet it is formulated in
a significantly more complex manner than the other axioms and postulates of Euclid.
This complexity raises suspicions that the fifth postulate —whether in its original
or modified form—should be derivable from the remaining axioms and postulates,
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making it redundant. Indeed, many scholars attempted to prove it, and some were
even convinced that they had succeeded. However, it was always later revealed that
their “proof” relied not only on Euclid’s other axioms and postulates but also on some
additional statement so intuitively aligned with geometric insight that they took it
for granted. This additional statement, however, was merely another, equivalent
formulation of the fifth postulate.

If we decide to deny the fifth postulate while insisting on the homogeneity of space,
meaning that no point or line in it has a privileged status, we are left with only two
options. Either we must accept the postulate that no parallel can be drawn through
a given point not on a given line, which implies that any two distinct lines must
intersect at a single point. Alternatively, we must accept the postulate that at least
two distinct parallels can be drawn through a given point not on a given line, which
leads to the conclusion that there will actually be infinitely many such parallels.

In the first case, we can further deduce that all lines have a finite length, which con-
tradicts Euclid’s second postulate stating that any given line segment can be extended
indefinitely. This rules out the first case as impossible, and we need not consider it
further. [How Bernhard Riemann (1826-1866) addressed this case and developed
what is now called elliptic geometry will not be discussed in our course.] Thus, only
the second case remains. However, within this framework, we gradually arrive at
seemingly bizarre conclusions that we might be inclined to consider absurd. For ex-
ample, the sum of the interior angles in any triangle is less than two right angles and
decreases as the area of the triangle increases. Specifically, if we construct an isosceles
right triangle with its base lying on a given line p and its height on a perpendicular to
this line, the angles formed by the triangle’s legs with line p will be smaller than half
a right angle, and their magnitude will decrease as the height increases. But not only
that: there exists a certain threshold value for the height beyond which the triangle
can no longer be constructed, as its intended legs will never intersect line p; in other
words, the perpendicular lines extending triangle’s legs will be parallel to line p. At
this point, it becomes a matter of personal taste when we decide that we have had
enough and declare some similar conclusion contradictory. However, this will not be
a contradiction with reason (i.e., a logical contradiction), but merely a contradiction
with our geometric intuition. And—as has been repeatedly demonstrated —the re-
jection of the supposedly “absurd” conclusion was logically equivalent to accepting
the fifth postulate. On the other hand, these “absurd” consequences can be viewed
as the historically first theorems of a new discipline: hyperbolic geometry.

The attitude of explorers toward the strange world that was subtly revealing itself
to them, into which they cautiously peered, gradually changed. Due to its contra-
diction with natural geometric intuition, it was rejected by Islamic scholars such
as Thabit Ibn Qurra (cca 830—-901), Hassan Ibn al-Haytham (cca 965-1040), and
Omar Khayyam (1048 —1131), as well as by Italian scholars of the 17*" and early 18
centuries, including Giovanni Alfonso Borelli (1608 -1679), Giordano Vitale (1633 —
1711), and Giovanni Girolamo Saccheri (1667 —-1733). According to their own views,
they considered this contradiction to be proof of the fifth postulate. For example,
Saccheri, in his treatise Fuclides Vindicatus (Euclid Freed from Every Blemish, 1733),
published shortly before his death, concluded that in a plane where the fifth postulate
did not hold, no square could exist. Thus, if we accept the “self-evident fact” that
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at least one square exists in the plane, we can use this to prove the fifth postulate.
Nevertheless, Saccheri evidently succumbed to the allure of the strange non-Euclidean
world and hesitantly admitted it as logically possible, though contradicting the real
world. The first to openly acknowledge his fascination with the world of non-Euclidean
geometry and to wish for it to be at least logically possible alongside the Euclidean
world was the aforementioned Lambert in 1766.

In 1807, the German lawyer and amateur mathematician Ferdinand Karl Schwei-
kart (1780—1857) published a study with the telling title The Theory of Parallel Lines
Together with a Proposal for Its Expulsion from Geometry. In 1818, he wrote to Gauss
about a dual geometry: one being geometry in the narrower sense (by which he meant
Euclidean geometry) and the other being a more general, so-called astral geometry, in
which the sum of the interior angles of a triangle is less than two right angles. His ideas
were further developed by his nephew, the mathematician Franz Adolph Taurinus
(1794—-1874). In 1825, Taurinus published The Theory of Parallel Lines, in which
he attempted to prove that Euclidean geometry was the only possible one. However,
just a year later, he published Geometriae Prima Elementa, in which he modeled
astral geometry as “geometry on a sphere with an imaginary radius” and called it
logarithmic-spherical geometry. In this work, Taurinus also admitted the possibility
of a geometry where the sum of angles in a triangle is greater than two right angles,
thereby anticipating Riemann’s elliptic geometry. Such a geometry can be realized
as the geometry on a spherical surface (after identifying pairs of antipodal points).
Nevertheless, Taurinus still regarded Euclidean geometry as having a privileged status
and considered it the only true geometry.

For Gauss, the world of non-Euclidean geometry began to open up around 1795,
and by approximately 1800 he was already navigating it safely. He gradually realized
that the “absurd” consequences of rejecting the fifth postulate did not represent a
logical contradiction but were instead inherent properties of a new geometry, which
he later called non-FEuclidean geometry. The reasons why he never published any of
his findings remain a matter of speculation. In addition to the already mentioned
Kantian thesis, he may have feared the “uproar of the Boeotians,” that is, the threat-
ening scandal that could have jeopardized his reputation. At the time, Gauss himself
adhered to the prevailing view that geometry was the science of the structural laws
of real space rather than an investigation of various “space-like” structures admis-
sible solely on the basis of logical consistency. This perspective made geometry an
empirical natural science akin to physics.

In this context, Gauss also realized that the validity of the fifth postulate might
be determined experimentally. While participating in the geodetic triangulation of
the Kingdom of Hanover between 1821 and 1825, he carefully measured the angles of
the largest triangle in the geodetic network under construction, formed by the peaks
of Brocken, Hoher Hagen and Grosser Inselsberg, with sides measuring 69, 85 and
107 km. However, the deviation of the sum of these angles from 180° did not exceed
the possible margin of measurement error. Much later, Gauss expressed the opinion
that to detect a potential discrepancy between real space and Euclidean geometry, it
would be necessary to measure the angles in a triangle whose sides were many times
larger than Earth’s radius. At the same time, he realized that such an experiment
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could only disprove the fifth postulate; to confirm it with certainty, one would need
to measure angles with absolute precision.

Whether Gauss’s concerns were justified or not, and whatever his reasons may have
been, the fact remains that he never published any of his discoveries or reflections on
this new geometry. As a result, the credit for discovering non-Euclidean geome-
try rightfully belongs to the Russian mathematician Nikolai Ivanovich Lobachevsky
(1792—-1856) and the Hungarian officer of the Austrian army and amateur mathe-
matician Jdnos Bolyai (1802—1860). Because of this, hyperbolic geometry is often
referred to as Lobachevskian or Bolyai-Lobachevskian geometry.

Janos Bolyai was the son of Farkas Bolyai, a high school professor of mathematics,
physics, and chemistry, and a friend of Gauss from their student days. Farkas himself
had previously attempted, without much success, to address the problem of the fifth
postulate, which led him to discourage his son from similar efforts. However, Janos
was not deterred, and between 1820 and 1823, he claimed to have discovered “mar-
velous things that filled him with wonder, [... and ...| created a strange new world
out of nothing.” However, the manuscript he submitted for review to his teacher
at the Imperial and Royal Military Academy in Vienna in 1826 was rejected. As a
result, his discoveries were only published in 1832 as a brief appendix to his father’s
high school mathematics textbook. In it, the author introduced so-called absolute
geometry, which encompassed both Euclidean geometry and (though not yet called as
such) hyperbolic geometry as special cases. Farkas Bolyai sent his son’s work to Gauss
for evaluation. Gauss replied that he had reached similar conclusions long before and
offered only very reserved praise. While Farkas felt honored by Gauss’s response, the
young Janos found it deeply discouraging.

Lobachevsky first publicly presented his discovery of non-Euclidean geometry, which
he called imaginary geometry, in a lecture at Kazan University in 1826. Over the
years 1829 to 1855, he published numerous works developing and explaining his the-
ory. In Russian academic circles, particularly at the universities of St. Petersburg
and Moscow, Lobachevsky’s work was met with misunderstanding and rejection. He
only gained recognition thanks to Gauss, who, after reading his Geometrical Investi-
gations on the Theory of Parallel Lines in a German translation published in Berlin
in 1840, began learning Russian to read more of Lobachevsky’s work. On Gauss’s
recommendation, Lobachevsky was admitted as a member of the Gottingen Academy
of Sciences in 1842.

Lobachevsky believed that studying different types of geometries was meaningful
regardless of which one provided an accurate description of the structure of real space.
This idea is reflected in his work Pangeometry (1855), in which Euclidean geometry
is reconstructed within the framework of hyperbolic geometry. Nevertheless, he also
attempted to determine the actual geometry of real space. Instead of measuring
angles in Earth-sized triangles, he examined triangles formed by fixed stars. With
the same goal, he analyzed astronomical data obtained by measuring the parallaxes
of Sirius and other stars. However, even with these efforts, he was unable to detect a
significant deviation that would confirm the non-Euclidean nature of real space.

Neither the insight, naturalness, nor even the virtuosity with which Gauss, Bolyai
and Lobachevsky navigated the strange world of hyperbolic geometry guarantees that
it is not a mere delusion, that might eventually collapse in a logical contradiction like a
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house of cards. However, we must honestly admit that we do not have such certainty
even in the case of the Euclidean geometric world. Yet, this does not bother us,
as our geometric intuition, on which we base our belief in its consistency, is widely
shared and reinforced by traditional education. Therefore, it would suffice if we could
prove the consistency of hyperbolic geometry under the assumption of the consistency
of Euclidean geometry. Notably, the consistency of Euclidean geometry under the
assumption of consistency of hyperbolic geometry follows from the aforementioned
results of Lobachevsky, though he himself did not frame the question in this way.

There exist several models of hyperbolic geometry within Euclidean geometry. It
will be enough to briefly acquaint ourselves with at least one of them. The first such
model was created in 1868 by Eugenio Beltrami (1835—-1900). Based on an observa-
tion by Arthur Cayley (1821 -1895), it was refined in 1871 by Felix Klein (1849 —1925)
into its final form, now known as the Beltrami-Klein model. It is surprisingly simple:
in this model, the points of the hyperbolic plane correspond to the interior points of
a circle in the Euclidean plane, while the lines are represented by the chords of the
bounding circle, excluding their endpoints.

In 1899, David Hilbert (1862—1943), considered the most significant and versa-
tile mathematician of his time, published the monograph Foundations of Geometry
(Grundlagen der Geometrie). The book reached its final form in the second edition
of 1902 and is regarded as the embodiment of the ideal of constructing a mathe-
matical theory through the axiomatic method. In it, Hilbert systematically builds
Euclidean plane and spatial geometry axiomatically, supplementing Euclid’s origi-
nal system with the mathematical formulation of certain intuitive principles. These
principles, while commonly used unconsciously in the ancient version, were not ex-
plicitly stated as they were considered self-evident. Hilbert proves the consistency
of his axiomatization of Euclidean geometry using the coordinate method, under the
assumption of the consistency of the arithmetic of real numbers. As a result, the
question of the consistency of hyperbolic geometry is also reduced to the consistency
of real arithmetic. Furthermore, Hilbert provides a proof of the independence of his
axioms, showing that none of them can be derived as a logical consequence of the
others. The independence of the fifth postulate (Playfair’s axiom of parallel lines)
is demonstrated precisely through reference to non-Euclidean geometry. As later re-
sults by Alfred Tarski (1926) revealed, Hilbert’s axiomatization is also complete: any
statement expressible in the language of Euclidean geometry is either provable within
the system or its negation is provable.

The idea of modeling (interpreting) one theory through another would play an in-
valuable role in mathematical logic and mathematics as a whole in the 20" century.
Two spectacular examples of the successful application of this method are Godel’s
model of the universe of constructible sets (1940) and Cohen’s forcing method (1963).
Godel’s constructible universe is a model of Zermelo-Fraenkel set theory (ZF) ex-
tended by the axiom of choice and the generalized continuum hypothesis, within the
universe of ZF theory.! Using forcing, Paul Cohen (1934 —2007) constructed a model

1 The continuum hypothesis states that any infinite subset of the set of all real numbers R is either
countable or has the same cardinality as R. According to the generalized continuum hypothesis, for
any infinite set X, there is no set Y whose cardinality |Y| satisfies the inequalities | X| < |Y| < |P(X)],
where P(X) is the power set of X.
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of the set theory ZF in which the axiom of choice is false, within the universe of ZF
theory. He also constructed a model of the set theory ZFC (ZF with the axiom of
choice) in which the continuum hypothesis is false within the universe of ZFC theory.
Together, these results demonstrate the independence of the axiom of choice from the
axioms of the set theory ZF, as well as the independence of the continuum hypothesis
from the axioms of the theory ZFC.

2.5 Logic in the 19" Century

In the previous section, we already reached the 19*" century and, by its end, even
the 20*" century. However, we only indirectly focused on the development of logic,
through the dramatic circumstances surrounding the emergence of non-Euclidean ge-
ometry and their influence on it. In this century, however, logic itself also undergoes
development. This occurs both within philosophy and through the formation of math-
ematical logic (as mathematically presented formal logic), alongside the emergence
of set theory. Gradually, the idea matures that these two disciplines should serve as
the foundation of mathematics, thereby providing the long-sensed internal unity of
mathematics with an “institutionalized form”.

A remarkable figure in the first, philosophical line of logic’s development in the
19'" century is the German-writing Prague-born Catholic priest Bernard Bolzano
(1781 —1848). Bolzano lectured on theology and philosophy at the Charles-Ferdinand
University in Prague while also engaging in logic, mathematics, aesthetics and ethics,
as well as state theory and social issues. Due to his liberal views on social matters
and anti-militarist stance, he was dismissed from the university in 1819, prohibited
from public speaking, and two of his works were placed on the index. He spent the
rest of his life in seclusion but continued working and lecturing within a small circle
of his students and friends.

Bolzano’s mathematical work is characterized by the anticipation of future discov-
eries, or even by discoveries that remained unnoticed in his time and were rediscovered
only later on. At a time when topology as a mathematical discipline did not yet exist,
Bolzano arrived at a definition of dimension similar to the small inductive dimension,
later hinted at by Henri Poincaré (1854-1912) in 1912 and introduced by Pavel
Samuilovich Uryson (1898 -1924) in 1922 and by Karl Menger (1902-1985) in 1923.
He was the first — before Karl Weierstrass (1815-1897) —to construct an example
of a continuous function that is nowhere differentiable. He also demonstrated that
every bounded numerical sequence contains a convergent subsequence. Even before
Augustin-Louis Cauchy (1789-1857), he formulated the convergence criterion now
known as the Cauchy-Bolzano condition.? He also proved that a continuous function
attaining values of opposite signs at the endpoints of an interval must attain the value
0 within that interval.

This also applies to Bolzano’s treatise Paradozes of the Infinite (Paradozien des
Unendlichen), published posthumously in 1851. In it, Bolzano constructs the first
historical version of set theory (Menge), presents arguments in favor of accepting

2 A sequence of real numbers a,, satisfies the Cauchy-Bolzano condition if, for every real number
e > 0, there exists a natural number m such that for every n > m, the inequality |an — am| < €
holds.
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actual infinity, provides a proof of the existence of an infinite set supported with
theological argumnets (specifically by invoking God’s omniscience), and demonstrates
that an infinite set contains a proper subset equivalent to itself (that is, in a certain
sense, of the same size, contradicting Euclid’s axiom that “the whole is greater than
the part”). Later on, in 1888, Richard Dedekind (1831—1916) will use this property
as the definition of an infinite set. Bolzano’s Paradozes of the Infinite influenced in
several aspects Georg Cantor, the creator and founder of set theory, who referred to
it multiple times, particularly when defending his concept of actual infinity. A certain
difference in approach to infinite sets, which Cantor regarded as Bolzano’s error, later
served as inspiration in the 1970s for the Czech mathematician and philosopher Petr
Vopénka (1935—-2015) in developing his Alternative Set Theory.

However, Bolzano’s most significant contribution to logic is his monumental four-
-volume work Theory of Science, An Attempt at a Detailed and Largely New Expo-
sition of Logic with Constant Regard to Its Previous Ezpositors ( Wissenschaftslehre,
Versuch einer ausfihrlichen und grosstenteils neuen Darstellung der Logik mit steter
Riicksicht auf deren bisherige Bearbeiter), published in 1837. The logic in Theory
of Science is understood primarily as the methodology of science rather than formal
logic, which remains in the background. Simply put, Bolzano’s Theory of Science is
dedicated to analyzing the philosophical and epistemological foundations for justify-
ing scientific knowledge, as well as formulating logical and methodological principles
to be followed when seeking truth, structuring scientific knowledge into distinct dis-
ciplines, and presenting it in the form of textbooks with the goal of achieving the
highest possible degree of clarity and persuasiveness.

Bolzano is convinced that for every scientific discipline, a fundamental set of initial
truths can be established from which all further knowledge within that field follows
as consequences. In doing so, he distinguishes between the concepts of consequence
(Abfolge) and formal derivation (Ableitung), thereby implicitly arriving at a distinc-
tion between the semantic and syntactic aspects of scientific theories. He emphasizes
semantics, arguing, for example, that a good proof should not only be logically cor-
rect but should also include a justification (Begrindung) that provides insight and
understanding.

Bolzano’s style of exposition and argumentation is logically refined, meticulously
elaborated, and internally consistent, though not necessarily easy to read for a mod-
ern audience. He introduces original concepts such as sentence in itself (Satz an sich),
truth in itself (Wahrheit an sich), and idea in itself (Vorstellung an sich). A sentence
in itself is a statement that asserts something, whether true or false, regardless of
whether it has been expressed in words or even merely thought in someone’s mind.
Each individual sentence in itself exists, so to speak, “in a single instance”, and re-
peating it through speech or writing does not multiply it. In today’s terminology,
we might say that a sentence in itself represents the content, sense, or meaning of a
statement, whether spoken, written, or thought, or even one that could potentially
be spoken, written, or thought. A sentence in itself that states something as it really
is (i.e., is true) is called by Bolzano a truth in itself. The components of sentence in
themselves that do not themselves constitute a full proposition are termed ideas in
themselves. These can be simple or complex. Today, what Bolzano called an idea
in itself would likely be referred to as a concept, or depending on circumstances, the
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content or meaning of a concept. If we look for examples in specific sciences, mathe-
matical concepts, statements, and knowledge would likely correspond most faithfully
to ideas, sentence and truths in themselves. This is no coincidence — mathematics, for
Bolzano, serves as a model for building and exposition of other scientific disciplines.
Bolzano attributes to his propositions, truths and ideas in themselves a certain
kind of existence outside of time and space, while cautioning that this is not ex-
istence in the real world. On the other hand, he acknowledges the real existence
not only of verbally expressed representations and propositions but also of merely
thought ideas in the mind of a particular person. This philosophical stance is com-
monly referred to as modern or semantic Platonism. At the same time, Bolzano’s
work establishes a clear separation of logic from any psychologizing tendencies and —
despite his Kantian sounding “an sich terminology” — takes a critical stance against
Kantian metaphysics. Bolzano was likely the first to recognize that the foundation
of philosophy does not lie in metaphysical speculation but in the study of what and
how we speak, and the laws governing our language. In his Theory of Science, he laid
the groundwork for the semantic tradition in Western thought. In this spirit, he was
followed much later by Austrian philosophers Franz Brentano (1838 -1917), Alexius
Meinong (1853 -1920), and Edmund Husserl (1859—-1938); by the founding figures
of the Polish Logical School, Kazimierz Twardowski (1866—1938), Jan Lukasiewicz
(1878 -1956), and Stanistaw Lesniewski (1886—-1939), and most notably by Alfred
Tarski (1901—1983) with his 1930s conception of logical consequence and truth in
formal languages, which remains fundamental in mathematical logic to this day.

In the 19" century, algebra experienced significant development, along with an
expansion of its traditional areas of application. Gradually, a perspective emerged
in which algebraic expressions and manipulations were no longer necessarily viewed
as representing only numbers and operations on numerical domains. Likewise, they
did not have to satisfy all the identities governing numerical operations. Among the
many examples of this shift, one notable discovery was that of quaternions, a four-
-dimensional analogue of complex numbers, made in 1843 by the Irish mathematician
William Rowan Hamilton (1805-1865). Quaternion multiplication turned out to
be non-commutative, challenging conventional mathematical assumptions. In this
intellectual atmosphere, logic emerged as a mathematical discipline in the British
Isles. In 1847, two influential works were published: The Mathematical Analysis of
Logic, Being an Essay Towards a Calculus of Deductive Reasoning by George Boole,
and Formal Logic, or the Calculus of Inference, Necessary and Probable by Augustus
De Morgan.

George Boole (1815—-1864) was a self-taught mathematician who gained recogni-
tion in the scientific community for his work on differential equations and invariants.
One of his papers even earned him a gold medal from the Royal Society in 1844. In
The Mathematical Analysis of Logic, Boole transformed logic — previously considered
a branch of philosophy —into a mathematical discipline. He also contributed to prob-
ability theory. Boole realized that logical connectives can be interpreted as algebraic
operations on statements, properties, or classes of objects. Logical laws can then
be formulated as identities for these operations. This approach allowed deductive
reasoning to be expressed as calculations, in line with Leibniz’s vision of a calculus
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ratiocinator. In probability theory, Boole sought to develop a general method for de-
termining the probability of one event based on the probabilities of logically related
events. In recognition of his contributions, Boole was appointed as the first professor
of mathematics at Queen’s College, Cork, in 1849, with De Morgan’s support, despite
not having a university degree himself. A more detailed systematic exposition of his
approach and opinions appeared in his 1854 work: An Investigation of the Laws of
Thought, on Which Are Founded the Mathematical Theories of Logic and Probabili-
ties.

Boole used the symbol 1 for truth or the universal class, and 0 for falsehood or the
empty class. He represented negation as a complement relative to the universal class
1 — x; conjunction (and) as the logical product x - y; disjunction (or) as the logical
sum z + y, which he interpreted in an exclusive sense (z or y, but not both). Boolean
operations followed conventional identities, such as the commutative laws zy = yz,
x +y = y + x; the associative laws (zy)z = z(yz), (x +y)+ 2z = x + (y + 2); the
distributive law x(y 4+ z) = zy + zz; or the law of double negation (complement)
1—(1—2) = x. However, there emerged also some “non-standard identities”, such as
xx =z, or x +x = 0. The last identity, arising from Boole’s exclusive interpretation
of the logical connective or (4) puzzled even him, as he expected that x +z = 0
should imply « = 0, following numerical analogy.

In the 20" and 21% century, Boole’s ideas led to applications their author even
could not have dreamed of. Binary codes, Boolean gates and switches, logic circuits,
organized into complex structures in chips became basic units for design and construc-
tion of computers and many other electronic devices. Moreover, Boolean algebras
remain one of the fundamental mathematical structures in set theory, mathematical
logic, measure theory, probability theory and related disciplines.

Augustus De Morgan (1806 —1871) is likely best known to readers as the author of
De Morgan laws, connecting the logical connectives of conjunction and disjunction (in
the non-exclusive sense) through negation. In modern symbolic notation, they can be
written, e.g., as the tautologies:

-(AAB) & (mAV-B) -(AV B) & (mAA-B)

These laws appeared in his 1846 work On the Structure of the Syllogism in a less
transparent symbolic form. However, in verbal (i.e., non-symbolic) form they were
already known to William of Ockham as early as the 14" century.

De Morgan also coined the term mathematical induction for the well-known method
of proving statements about natural numbers. He did so in his widely used textbook
Elements of Arithmetic (1830). His most significant contribution to logic, however,
was broadening its scope beyond the traditional subject-predicate reasoning, which
had dominated since antiquity. Instead, he emphasized reasoning with statements in-
volving two- or multi-place relationships between objects. This shift helped establish
the view that relational reasoning plays a crucial role in mathematical deduction and
scientific argumentation. Moreover, certain logical operations on relations —such as
inversion, composition and projections — cannot be expressed using only logical con-
nectives. Except for inversion, these operations require quantification over variables.
Thus, De Morgan became one of the pioneers in the study of quantifiers in logic. This
development took place in a series of articles titled On the Syllogism (1846—1868),
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which included both of the previously mentioned works. De Morgan is also credited
with an anecdotal example of a logically valid relational inference:

All horses are animals.
Therefore, every horse’s head is the head of an animal.

While obviously correct, this inference cannot be formally justified within Aristotelian
subject-predicate logic.

Under the influence of De Morgan’s and especially Boole’s work, logic became a
fashionable subject among intellectuals in the English-speaking world in the second
half of the 19" century. Among them, two figures of truly Renaissance stature stood
out, working on opposite sides of the Atlantic.

William Stanley Jevons (1835—1882) is best known as a leading British economist
who extensively applied statistical and mathematical methods. He discovered the
so-called Jevons paradox concerning the relationship between production, demand
and commodity prices, and was also the author of the theory of marginal utility. In
logic, he built upon the work of Boole and De Morgan. He replaced Boole’s logical
sum (exclusive disjunction) with disjunction in a non-exclusive sense and system-
atically worked with variables and quantifiers. In his treatise The Substitution of
Similars (1869), he highlighted the Leibnizian universal principle, according to which
“whatever is true of a thing is true of its equivalent”. This principle would later be
expressed in the form of logical axioms of equality. His book Elementary Lessons
on Logic (1870) soon became the most widely used logic textbook in the English
language. In another work, The Principles of Science (1874), he examined the re-
lationships between logic (deduction), generalization based on facts (induction), and
probability. He illustrated his ideas with numerous relevant, meticulously elaborated
examples from natural sciences and economics. He also foresaw the use of one-way
functions and integer factorization in cryptography. In 1869, he constructed a me-
chanical calculating machine, called the logical piano due to its shape, which was the
first of its kind to perform Boolean logical operations faster than a human.

Charles Sanders Peirce (1839—1914) is best known as one of the founders of the
first philosophical movement born on American soil, known as pragmatism. However,
he also engaged in physics, chemistry, astronomy, geodesy and cartography, as well
as logic. He contributed to measuring fluctuations in the Earth’s gravitational field,
which helped refine the measurement of the ellipticity of Earth’s globe. He is also the
author of the so-called quincuncial projection—a cartographic representation that
allows for periodic tiling of the plane with consecutive projections of the Earth’s
octants in the form of isosceles right triangles. In logic, he sought to connect Boole’s
algebraic approach with De Morgan’s relational inferences. Like Jevons, he replaced
Boole’s logical sum with disjunction in a non-exclusive sense. He also realized that
when working with classes, it is more advantageous to use the relation of inclusion
instead of equality, as it corresponds to implication. Even before Sheffer, he discovered
that all logical operators could be expressed using a single one — either not (... or ...)
(later called Peirce’s dagger or NOR) or not (...and...) (later called Sheffer’s stroke
or NAND). He explicitly introduced the quantiﬁcatlon of variables, interpreting the
universal quantifier II; as an infinite logical product (conjunction) and the existential
quantifier ¥; as an infinite logical sum (disjunction in a non-exclusive sense). He was
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likely the first to recognize the fundamental distinction between propositional calculus,
logic with quantification of variables for individual objects (first-order logic), and logic
that also quantifies properties of individual objects (second-order logic).

Peirce also anticipated the application of Boolean logic in the design of switches in
electrical circuits and the subsequent possibility of constructing an electronic comput-
ing machine. His former student, Allan Marquand (1854 —1924), inspired by Jevons’s
logical piano, built an improved, smaller, and portable version of it between 1881
and 1882. In 1887, at Peirce’s suggestion, he designed an electronic version of a logic
computer, though he never realized it.

With Peirce and Jevons, the era in which logic was primarily the domain of poly-
maths, i.e., scholars engaged in multiple fields of human knowledge, came to an end.
For thinkers from Aristotle through Leibniz and Lambert to Jevons and Peirce, logic
was just one of many areas of their interest and expertise. However, following the
trend initiated by Boole and De Morgan, logic became a mathematical discipline, and
its further development was shaped mainly by mathematicians — often with broad
interests, but typically limited to several branches of mathematics and the related
philosophical questions.

2.6 End of the 19*" and Beginning of the 20" Century

The mathematization, or more precisely, the algebraization of logic was completed
in the monumental three-volume work of the German mathematician Ernst Schroder
(1841-1902), Lectures on the Algebra of Logic (Vorlesungen dber die Algebra der
Logik, 1890—1905). In this work, Schroder built upon Boole, De Morgan, Jevons, and
especially Peirce. He systematically applied the duality between conjunction and dis-
junction as mediated by De Morgan’s laws, worked with the relation of inclusion and
quantifiers, and developed the algebra of relations with composition as multiplication.
However, this was still mathematical logic only in the first of the two meanings we
mentioned at the beginning: it was the mathematization of logic by algebraic means.

By the turn of the 19" and 20" centuries the time was ripe for the long-anticipated
potential of logic for mathematics to begin fully manifesting itself. However, it was
first necessary to recognize and formulate the aims and objectives that such math-
ematical logic should serve. From approximately the 1880s, two distinct lines of
development can be observed in this process; for simplicity, we will refer to them as
the logical line and the set-theoretic line. Although they are closely intertwined, their
beginnings can be clearly distinguished, allowing us to follow them separately for a
certain period. We will begin with the logical line.

A pioneer in the systematic use of logic in mathematics was the eminent and ver-
satile Italian mathematician Giuseppe Peano (1858 -1932). He worked in number
theory, linear algebra, geometry, differential equations, and logic. He was the first to
construct an example of a continuous curve filling a square. Peano was also the creator
of the international language Latino sine flexione, based on Latin with a significantly
simplified grammar. His linguistic interests, combined with the emergence of similar
counterintuitive objects in mathematics, led him to the decision to elevate logic to a
universal language capable of expressing all of mathematics with unprecedented pre-
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cision and unambiguity. The first step in this direction was Peano’s axiomatization
of the arithmetic of natural numbers in 1889, using the successor as the sole funda-
mental operation. Based on it, the operations of addition and multiplication were
then defined recursively. However, this was made possible only due to the aziom of
induction (presented here in a modern formulation):

VXCN)(0eXA(VzeX)(z+1€X)=X=N)

In this statement, in addition to the variable x for natural numbers, the variable
X for subsets of the set of all natural numbers N is also quantified. From a later
perspective, Peano’s original arithmetic was thus a second-order theory. From 1894
onward, Peano with several collaborators began publishing (in a somewhat utopian
endeavor) the Mathematical Formulary (Formulario Mathematico), an encyclopedic
project aimed at compiling all known mathematical formulas and theorems in a stan-
dardized mathematical and logical notation created for this purpose. Peano’s logical
and set-theoretic notation (with various modifications) is still widely used today; an
example is the symbol ¢ introduced by Peano for element membership in a set, later
modified to its present form €.

An even more ambitious project was undertaken by the German mathematician,
logician, and philosopher Gottlob Frege (1848 —1925). In his two books, whose titles
reflect the Leibnizian heritage Concept-Script, a Formal Language of Pure Thought
Modeled upon that of Arithmetic (Begriffsschrift, eine der arithmetischen nachge-
bildete Formelsprache des reinen Denkens, 1879) and The Foundations of Arithmetic:
A Logico-Mathematical Investigation into the Concept of Number (Die Grundlagen
der Arithmetik: eine logisch-mathematische Untersuchung tiber den Begriff der Zahl,
1884) as well as in journal articles such as On Sense and Reference (Uber Sinn und
Bedeutung, 1892), On Concept and Object (Uber Begriff und Gegenstand, 1892), and
other works, Frege gradually developed his conception of logic. He expressed surpris-
ingly modern views on its role in philosophy and laid the groundwork for what would
later be called the analytic turn in philosophy. Frege also created his own unique log-
ical symbolism, but due to its cumbrousness, it did not gain widespread acceptance,
and namely his insistence on using it contributed to the lack of attention his work
received from his contemporaries. At the same time, he became convinced that the
concept of number and other arithmetic notions could be founded purely by logical
means, thereby building arithmetic and mathematical analysis as branches of logic.
Unlike Peano, who sought to use logic “only” as a universal language and method for
presenting mathematics, Frege went much further: he aimed to interpret mathemat-
ical concepts as logical ones and to reconstruct all of calculative mathematics within
the framework of logical forms. In doing so, he became the founder of a school of
thought in the foundations of mathematics known as logicism. The central tenet of
logicism is that mathematics can essentially be reduced to logic. Frege’s effort was
meant to culminate in the three-volume work Basic Laws of Arithmetic (Grundgesdtze
der Arithmetik), with the first volume published in 1893 and the second in 1903.

However, in 1902, while the second volume was still in press, Frege received a letter
warning him of a contradiction in his proposed formal system. The system allowed
for reasoning about a property (predicate) possessed by those properties (predicates)
that do not apply to themselves, in other words, properties that do not possess the
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property they designate. If we denote this property as R(z), then any predicate P(z)
has the property R(z) if and only if it does not have the property P(x). Formally,
R(P) & —P(P). If we now ask whether the predicate R(z) possesses the property
R(x), the result leads to a contradiction: R(R) < —R(R). This paradox undermined
Frege’s project in its current form. However, it is worth noting that Frege success-
fully reconstructed at least the arithmetic of natural numbers in a logicist manner
and proved Peano’s axioms; this part of his work remained unaffected by the contra-
diction. Even after this discovery, Frege continued to defend the logicist thesis, but
he abandoned work on the planned third volume of Grundgesdtze.

The sender of the letter was the British logician, mathematician, philosopher, and
political activist Bertrand Russell (1872—1970). The contradiction he pointed out to
Frege became known as Russell’s paradoz. In 1900, Russell attended the First Inter-
national Congress of Philosophy in Paris, where he met Peano and his collaborator
Alessandro Padoa (1868 —-1937). Their Formulario made a deep impression on him,
as it resonated with the goals of his own work, The Principles of Mathematics, which
was published in 1903. As Russell stated in the preface, this work had two main
objectives:

One of these, the proof that all pure mathematics deals exclusively with

concepts that can be defined in terms of a very small number of fundamen-

tal concepts, and that all its propositions are deducible from a very small

number of fundamental logical principles, ... will be established by rigorous

symbolic reasoning... The other object of this work, ... the explanation of the
fundamental concepts which mathematics accepts as indefinable, is a purely
philosophical task.

This is in full agreement with the logicist thesis; however, it can also be said that
Russell set as his goal the interpretation of mathematics by the aziomatic method,
utilizing symbolic logic.

Russell wrote his Principles before becoming acquainted with Frege’s work and had
planned to write a second volume. However, he was so captivated by Frege’s ideas that
he embraced the logicist thesis as his own and undertook to continue realizing Frege’s
vision. At the same time, confronted with his own paradox, he realized that preventing
similar contradictions would require fundamental measures. For his new project, he
managed to enlist his friend and former teacher, the distinguished British philosopher
and mathematician Alfred North Whitehead (1861—1947). Whitehead even aban-
doned work on the second volume of his similarly oriented A Treatise on Universal
Algebra (1898) to join the effort. Together, they wrote and, between 1910 and 1913,
published the monumental three-volume work Principia Mathematica, whose title al-
luded to the great Newton. In it, they presented, in the spirit of logicism, not the
entirety of contemporary mathematics but at least a considerably comprehensive syn-
thesis of its fundamental concepts and results. Even so, they could not avoid relying
on certain postulates that can hardly be justified purely logically (such as the axioms
of infinity, choice, and reducibility). Moreover, as a safeguard against paradoxes, they
introduced a sophisticated system of syntactic restrictions preventing self-reference—
that is, among other things, the application of a predicate to itself (such as P(P) or
—P(P)) or the formulation of set membership statements where a set belongs to itself
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(such as x € z or x ¢ ). This system became known as the ramified theory of types,
and we need not go into its further details here. It suffices to say that, in addition to
banning paradoxical expressions, it also preemptively forbade many “harmless” ones,
making logicist mathematics highly unintuitive and excessively complex.

The lasting contribution of Principia Mathematica is its logical symbolism, which
became widely adopted. However, in this respect, Russell and Whitehead did not
follow Frege but rather Peano. To Peano’s existential quantifier (3z), they added
a “timid” notation for universal quantification (z). The modern notation (Vz) was
introduced only in 1935 by Gerhard Gentzen (1909 —1945) but did not gain definitive
acceptance until the 1960s. Until then, a more “straightforward” notation, (Ez) and
(Az), was also commonly used in parallel.

2.7 Set Theory

Now is an appropriate time to step away from the logical trajectory we have been
following and return to the origins of the set-theoretic approach. The theory of sets,
in its initial informal form, was created by a single man-—a mathematician with
a strong visionary mindset — Georg Cantor (1845—-1918). He began developing his
theory in the 1870s, prompted by considerations about the uniqueness of function
expansions into trigonometric Fourier series. Cantor’s “first” sets were thus sets of
points on a line. However, he gradually arrived at a much more general understanding
of the concept. In his own words:

By a set, we understand any collection M of certain well-distinguished objects
m of our perception or thought (called elements of the set M) into a single
whole.

The formation of a set thus presupposes that all its elements already exist, that is,
they are either perceived or at least conceived as actually existing. In the case of
infinite collections, such as the natural numbers or points on a line, Cantor’s theory
departs from the previously dominant conception of infinity as potential and replaces
it with the notion of actual infinity by treating these collections as completed sets.

Furthermore, the elements of a set participate in it solely by their presence, regard-
less of their arrangement or other relations among them. Two sets are therefore equal
if and only if they have the same elements. This principle would later be formally
expressed as the aziom of extensionality. Another fundamental postulate of Cantor’s
theory is the general comprehension principle:

For every “meaningful” property P(x), one can form the set {x: P(x)} of all
elements x that have this property.

The two principles mentioned above result in set theory occupying a privileged po-
sition in relation to logic. It is not merely one of many theories that provide logic
with a space for application. In a certain sense, it is logic itself, manifested in a form
where its two closely related, largely subconscious guiding intentions have been taken
to their extremes. The first of these intentions lies in the tendency to identify logi-
cally equivalent properties, in other words, to replace properties—regardless of their
meaning and linguistic description — with their extensions, that is, with groupings of
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objects that possess the given property. This intention began to be realized already
during the algebraization of logic, for example, through Boolean algebras, and set
theory is merely a more finely structured culmination of this process. However, it is
important to recognize that this intention is highly problematic. A vivid illustration
of this is a well-known example given by De Morgan. Suppose our domain of ob-
jects consists of the eight planets of the Solar System: Mercury, Venus, Earth, Mars,
Jupiter, Saturn, Uranus, and Neptune. The number of possible properties of these
planets that one might consider is unimaginably vast: ranging from mass, state of
matter, and surface temperature to rotational period around its axis, orbital period
around the Sun, distance from the Sun, number of satellites (moons), presence of
atmosphere or water, or even the existence of life, and so on. On the other hand, the
strict application of the extensional viewpoint forces upon us the absurd conclusion
that the total number of possible properties of the elements of this (or any other)
eight-element set is merely 28 = 256.

The second of the aforementioned guiding intentions is the interpretation of as
many groupings of objects as possible as selfstanding objects. One of the conse-
quences of this approach is the actualization of the domain of all subsets of a given
set, that is, the ability to construct, for any set X, even an infinite one, the set
P(X)={A: AC X} of all its subsets. As we will see later, the realizability of these
intentions has its limits. Their unrestrained application leads to paradoxes or even
contradictions within Cantor’s theory. Therefore, it is necessary to apply them with
caution and to seek rules that would limit and regulate their application.

Cantor’s fascinating and ground-breaking insight into the world of infinite sets did
not emerge all at once but was gradually illuminated through a series of initially
subtle steps. Questions about the convergence of sequences of points on a line and
sequences of functions, as well as issues related to the classification of different types
of discontinuities in functions, required a more detailed clarification of the structure
of real numbers. In Cantor’s approach, each real number is determined as the limit
of a sequence of rational numbers satisfying the so-called Cauchy-Bolzano condition.
Moreover, two such sequences {a,} and {b,} determine the same real number if and
only if the sequence of their differences {a,, — b,} converges to zero. In this way,
individual real numbers are effectively represented as certain actual infinite objects.
Their actualization thus already presupposes the actualization of the domain of defi-
nition of the corresponding sequences, that is, the infinite set of all natural numbers.
The actualization of the set of all real numbers, which we identify with the set of
points on the line, is then a further logical, though by no means trivial, step in this
process.

During his deeper study of trigonometric series and other questions of mathematical
analysis of his time, Cantor began to systematically use the operation of derivation
of a point set A, defined as the set A’ of all accumulation points of A (i.e., points p in
whose arbitrarily small neighborhood there exists some point a of the set A, distinct
from p). This operation can be iterated any finite number of times according to the
recursive scheme:

A0 — 4 Al+D) (A(n))’
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However, once all finite-order derivations A(™) are available, one can define the deriva-
tion of infinite order

A = AN AP N nAM N =0

and continue further:
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By focusing on the ordering of these successive steps, Cantor discovered infinite ordi-
nal numbers, which extend the (finite) natural numbers. Moreover, the arithmetic of
natural numbers, including addition, multiplication and exponentiation, can be natu-
rally extended to ordinal numbers. However, this required a more specific notation for
infinite ordinal numbers. For this reason, Cantor replaced the symbol co with w. In
a slightlymore detailed view and an ever-accelerating moving forward, the beginning
of the ordinal number series appears approximately as follows:

0,1,2,....n,n+1, ... ww+1l,w+2,....0+n, ... 2w, 2w+ 1, ...

w
Wit Wit w, 207w W Wt W

Another, distinct type of infinite numbers Cantor discovered when comparing the
“sizes” of infinite sets, based on the comparison of finite sets by the number of their el-
ements. This “generalized number of elements” of a set was called its cardinal number
or cardinality. Two sets A and B have the same cardinal number, denoted |A| = |B|,
if there exists a bijective mapping f: A — B. We say that the cardinal number of set
A is smaller than the cardinal number of set B, symbolically |A| < | B, if there exists
an injective mapping f: A — B and |A| = |B| does not hold. Cardinal numbers
extend natural numbers (which serve as the cardinal numbers of finite sets), and the
arithmetic of natural numbers, including addition, multiplication and exponentiation,
can also be naturally extended to them. However, ordinal and cardinal arithmetic
differ fundamentally: while cardinal addition and multiplication are commutative, for
ordinal numbers we have, for example:

ltw=w<w+1 w2=w<2w

For the cardinal number of the set N of all natural numbers, Cantor introduced the
notation Rg = |N| (X, pronounced aleph, is the first letter of the Hebrew alphabet), and
he called sets of cardinality Xg countable (abzdhlbar). The next immediate cardinal
number R; = | corresponds to the set © of all ordinal numbers having at most
countably many predecessors. Cantor called the cardinal number of the set R of all
real numbers the cardinality of the continuum and denoted it by ¢ = |R|. He was
able to show that ¢ = 2% where 2% = |P(N)| is the cardinality of the power set
of N, as well as the general inequality |X| < |P(X)| = 2/XI for any set X. For a
long time, Cantor attempted to prove the equality ¢ = Ry but without success. This
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statement became known as the continuum hypothesis and was placed first on Hilbert’s
famous list of 23 problems, which he presented to the mathematical community at the
Second International Congress of Mathematicians in Paris in 1900. We have already
briefly mentioned how this problem was eventually resolved in the concluding section
dedicated to non-Euclidean geometry.

However, Cantor succeeded in proving several surprising results. Any interval has
the same cardinality as the entire set R. The real line R and the segment (i.e.,
interval) [0,1] have the same cardinality as the plane R?> = R x R or the square
[0,1]% = [0,1] x [0, 1]. From this, it follows that the continuum of any finite dimension
has the same cardinality (meaning it contains the same number of points) as the one-
-dimensional continuum. This— contrary to Cantor’s original expectations —implies
that the cardinal number is too coarse an invariant to capture the dimension of a
point set. Furthermore, the set @ of all rational numbers and the set A of all (real)
algebraic numbers? are countable, meaning they have cardinality Xo. On the other
hand, the set R of all real numbers has cardinality ¢ > Ng. Thus, Cantor provided
a purely existential proof of the existence of transcendental (i.e., non-algebraic) real
numbers without explicitly constructing a single one.

The characterization of the cardinalities of infinite sets using their cardinal numbers
and the structure of so-called well-ordered sets* using their ordinal numbers, along
with the ability to extend arithmetic operations on finite natural numbers to these
new numbers, changed Cantor’s perspective on the different kinds of infinity that
they represented. On one hand, this helped him overcome the reluctance to interpret
this infinity as actual. In a sense, this led to the devaluation of this type of infinity,
reflected in new terms such as transfinite sets or transfinite numbers, which suggested
that they formed just an intermediate stage between the finite and the “true” or
“genuine” infinity represented, for example, by the totality of all sets or the totality
of all cardinal or ordinal numbers. On the other hand, looking into the depths of
these newly opened domains evoked a sense of vertigo, formally manifested in the
impossibility of their actualization: if we assume that there exists a set of all sets
or a set of all cardinal or ordinal numbers, we arrive at a contradiction. Cantor
therefore referred to these collections as inconsistent sets and firmly believed that
the apparent paradoxes could be resolved through deeper study of the principles of
set formation. An exception was Russell’s paradox, published in 1903, which applied
equally to Frege’s Grundgesdtze and Cantor’s set theory. Due to the simplicity of its
formulation, this paradox significantly shook Cantor’s confidence in his own theory.

Cantor was also well aware that his interpretation of infinity as actual challenged
the paradigm that had predominantly prevailed in both mathematics and philosophy
since ancient times. He found support in Christian theology, which holds that infinity
exists actually, being a divine attribute in terms of God’s omnipotence, omniscience,
love and mercy. Yet, he was soon confronted with the objection that his theory
undermined God’s exclusive and unique claim to possess these attributes. Cantor,
however, was convinced that his set theory was not heretical; rather, he believed
it had been revealed to him from heaven as a new and profound truth, along with

3 A real or complex number c is called algebraic if there exists a polynomial f(z) = 2™ +a;2™ "1+
...+ an—1z + an with rational coefficients a1,...,an € Q such that f(c) = 0.
4 An ordered set (X; <) is called well-ordered if every its nonempty subset has the least element.
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the mission to spread it further. In this context, the paradoxes he had discovered
played in his favor, as they delineated the “realm of the transfinite” — accessible to
human intellect — while separating it from the realm of the true, that is, absolute
and non-actualizable infinity, which eludes human reason and belongs solely to God’s
competence. To ensure that the actual infinity present in his infinite sets and infinite
cardinal and ordinal numbers was not in conflict with Church doctrine, Cantor turned
to two prominent Roman Catholic scholars of his time: the priest, theologian, and
philosopher Konstantin Gutberlet, (1837—1928) and the Jesuit theologian and expert
in Church dogmatics, Cardinal Johan Baptist Franzelin (1816 —1886), with whom he
exchanged several letters. Both theologians responded to Cantor’s ideas with kindness
and understanding. After a relatively brief discussion, they unanimously concluded
that his set theory did not contradict Church teachings and acknowledged that the
actualization of infinity in infinite sets and transfinite cardinal and ordinal numbers
did not infringe upon God’s majesty. On the contrary, they recognized that Cantor’s
discoveries contributed to the greater glory of God.

In 1908, the German mathematician Ernst Zermelo (1871 —-1953) published an ax-
iomatic system of set theory in which he succeeded in preserving all the essential
properties of Cantor’s theory while simultaneously avoiding all known set-theoretic
paradoxes. He achieved this by imposing certain syntactic restrictions on the prop-
erties to which the comprehension principle could be applied, as well as by requiring
that new sets (with three exceptions) be delimited only as subsets of previously given
sets. However, as he noted himself, he was unable to prove the consistency of his
system (i.e., to demonstrate that no contradictions could arise within it). Zermelo’s
system was later extended by Abraham Fraenkel (1891 -1965) and Zermelo himself.
The Zermelo-Fraenkel axiomatic system with the axiom of choice, abbreviated as
ZFC, remains the most widely used axiomatization of set theory to this day.

A different axiomatization of set theory, closer in spirit to logicism in the sense
of Frege and Russell, was proposed in 1937 by the American philosopher and logi-
cian Willard Van Orman Quine (1908-2000). His system, called New Foundations,
abbreviated NF, allows for a universal set (i.e., the set of all sets) while avoiding
paradoxes by applying Cantor’s comprehension principle only to properties whose
syntactic form inherently excludes self-reference. However, New Foundations has sev-
eral peculiar characteristics and has not gained widespread acceptance as foundations
of mathematics. Even the question of the relative consistency of NF with respect to
ZFC remains an open problem to this day.

In 1914, on the eve of World War I, Felix Hausdorff (1868 —1942) published Prin-
ciples of Set Theory (Grundziige der Mengenlehre). After the war, this book became
the most widely used textbook and reference monograph on set theory for a long time.
A second, revised, and condensed edition was published in 1927 under the simpler
title Set Theory (Mengenlehre). In addition to a systematic exposition of set theory
itself, the book covers topics such as ordered sets, topology (i.e., point-set theory), the
set-theoretic approach to measure theory and probability, as well as to mathematical
analysis and function theory. In this work, Hausdorff introduced an approach that
gradually gained dominance throughout 20*"-century mathematics: studying vari-
ous mathematical theories through their set-theoretic models. Set theory not only
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provides “sufficient space” to represent possible structures of different theories within
the set-theoretic universe, but it also offers these theories a universal language, en-
abling their study in a unified manner while simultaneously revealing relationships
between them. As a result, set theory became the guarantee of the long-sought for
internal unity of all mathematics. According to Hilbert, it is a “paradise created
for us by Cantor, from which no one can expel us”. This made the task of proving
the consistency of set theory all the more pressing—ideally, the consistency of its
axiomatic system ZFC, but for the beginning it would be enough to prove the consis-
tency of some its fragment sufficient for constructing arithmetic of natural and real
numbers and of the foundations of mathematical analysis.

This is easier said than done. Namely, it is not clear at all how such a proof should
proceed. Typically, the consistency of one theory is proved assuming the consistency
of another. For example, assuming the consistency of Euclidean geometry, we can
prove the consistency of hyperbolic geometry (and vice versa). However, for a theory
meant to serve as the foundations of mathematics, a relative proof of consistency,
relying on the consistency of some supposedly even “more fundamental” theory, is
insufficient. What is needed is some “absolute” proof. Pursuing this goal, Hilbert, in
the 1920s, proposed and developed a program of formalization of mathematics that
allowed mathematical proofs to be represented as finite sequences of symbols with
clearly recognizable syntactic structure. To prove the consistency of such a formalized
theory, one would simply need to verify that, among the of proofs, there cannot occur
a pair of certain precisely described form, responsible for a contradiction. However,
as Kurt Godel demonstrated in 1930, the goals of Hilbert’s program are unattainable.

2.8 Farewell to History

It remains to be said that during the 1920s and early 1930s, the central role of first-
-order logic was recognized as the most important “layer” of mathematical logic—
at least from the perspective of mathematics. This recognition was largely due to
the work of the Norwegian mathematician and logician Thoralf Skolem (1881 —1963)
and Godel’s proof of the completeness theorem for first-order logic in 1929. This was
further confirmed by subsequent developments in the works of Polish-American math-
ematician and logician Alfred Tarski and his students in pre-war Poland and later in
the United States, the Soviet mathematician Anatoly Ivanovich Malcev (1909 —1967),
the Israeli-American logician and applied mathematician Abraham Robinson (1918 -
1974), and many others who opened up a wide range of applications for logic in
mathematics. Gradually, they established a new mathematical discipline, later called
model theory. To some extent, model theory can be regarded as the “metamathemat-
ics of algebra”, as it provides a general framework and unifying perspective on various
algebraic disciplines, allowing for the discovery of their often hidden interconnections.
However, as demonstrated by Robinson’s nonstandard analysis, its applications ex-
tend far beyond algebra.

The rapid development of mathematical logic, which began in the 1920s and 1930s,
accelerated even further after World War IT and continued throughout the remainder
of the 20" century up to the present day. It is simply impossible to outline its
full course within the limited scope of this textbook. Therefore, we will change our
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approach and no longer follow the development of mathematical logic from a historical
perspective. Instead, we will focus on presenting its core components: propositional
calculus, first-order logic, and a brief introduction to model theory. Between the
second and third of these topics, we will include a chapter on the celebrated Gddel’s
incompleteness theorems and a short reflection on their philosophical implications.



3 Propositional Calculus

Propositional Calculus, also called Sentential Calculus, Propositional Logic, or Zeroth-
-Order Logic, examines the structure of certain fragment common both to natural
languages as well as to languages of scientific theories, namely the abstract patterns
or forms of propositions or statements occurring in them as well as the relations
between them which can be inferred from their form. This will make possible a
complete description of valid arguments in terms of structural relations between the
forms of their constituents.

We will take advantage of the fact that our readers have already some acquaintance
with Propositional Calculus, including the logical connectives and their meaning,
truth tables, tautologies, etc. This allows us to focus on some general “philosophical”
features of Propositional Calculus which are not always part of the usual courses and
use this familiar and rather elementary material as a platform for the exposition of
some topics and issues which will reappear later on within the Predicate Calculus in
a more advanced form.

3.1 Propositions and Propositional Forms

A propostion or a statement is an affirmative grammatical sentence making a mean-
ingful announcement which is either true or false, no matter whether we or whoever
else are able to decide its verity. We say that the truth value of a proposition is 1 if
it is true and it is 0 if it is false.

Given some propositions we can form new ones combining them by means of the
unary logical connective mot and the binary logical connectives and, or, if ... then,
if and only if, either ...or, neither ...nor, etc. Propositional Calculus is based on
the following fundamental observation:

If A is a proposition formed of some simpler propositions p1,. .., p, by means
of logical connectives in a certain way then the truth value of A can be deter-
mined just out of the truth values of the propositions p1,..., pn and the way

how A is formed, regardless of the meaning and content of the propositions
P1,---5 Pn-

In other words, the truth value of A can be computed from the truth values of its
components pi,. .., p, and the abstract pattern or the form of A.

As a consequence, the subject of Propositional Calculus is not primarily proposi-
tions themselves but the forms propositions can take on, according to the way how
they are composed from simpler propositions by means of logical connectives. These
abstract forms we call propositional forms; they are expressions (words) of some for-
mal language to be introduced below. In order to describe the syntaz of the language

44
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of Propositional Calculus we will codify its symbols and describe the way how its
words are generated.

The language of Propositional Calculus has the following symbols divided into three
groups:

e Propositional variables: p, q, 7, po, p1, P2, ---, ¢, ¢", ...

e Logical connectives: = (not), A (and), V (or), = (if ...then or implies),

< (if and only if) (two would suffice)

e Auxiliary symbols: (, ) (parentheses) (they could be avoided)
We denote by P the set of all propositional variables. We assume that the set P is
countably infinite at least in the potential sense, i.e., whenever we have any finite list of
propositional variables p1, ..., p,, we are able to find some new propositional variable
q not included in that list and, at the same time, all the propositional variables p € P
can be set into a one-to-one correspondence with the natural numbers n € N.

Propositional forms are certain finite strings, i.e., words, consisting of the above
quoted symbols. The set VF(P) of all propositional forms over the set of propositional
variables P is defined recursively as the smallest set containing all the propositional
variables and closed with respect to the application of logical connectives, i.e., the
smallest set satisfying the following two conditions:

1° P C VF(P) (every propositional variable p € P is a propositional form over the
set P)
2° If A, B € VF(P) then —A, (AAB),(AV B),(A= B),(A< B) € VF(P) (if the
strings A, B are propositional forms over the set P then so are the strings —A,
(AAB), (AV B), (A= B) and (A< B))
According to 1°, propositional variables are sometimes referred to as atomic propo-
sitional forms. As a consequence of the fact that the set P of all propositional variables
is countable, the set VF(P) of all propositional forms over P is countable, as well.

The set VF(Q) of all propositional forms over any nonempty set of propositional
variables Q C P can be defined in an analogous way. In particular, for a finite set
Q ={p1,...,pn}, we denote

VF(Q) = VF(p1,....pn)

Since every propositional form A € VF(P) is composed from atomic propositional
forms by applying the rule 2° just finitely many times, there always is a finite number
of propositional variables p1,...,p, € P such that A € VF(p1,...,pn).

If A, B are propositional forms then the propositional form —A is called the nega-
tion of A, and the propositional forms (A A B), (AV B), (A = B) and (A < B)
are called the conjunction, the disjunction or the alternative, the implication and the
equivalence of A and B, respectively.

3.1.1 Remark. (a) According to the just stated definition not all finite strings of
symbols of the language of Propositional Calculus are propositional forms. For in-
stance, the expressions p, ¢, r, =p, (p Aq), (-p=71), (p A q) V (—p = r)) can easily
be recognized as propositional forms, while the expressions like (p—¢q), —pp =)(r—
obviously fail to be propositional forms. Less obvious is the finding that neither the
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expressions p A q, =p = 7, (p A q) V (-p = r) are propositional forms although we
are inclined to recognize them to be. In order to reconcile the above definition with
our intuition and the usual practice, we accept the convention of omitting the out-
ermost parentheses (which clearly are superfluous) in any propositional form. Thus
we consider the expressions like p A g, =p = 7, (p A q) V (-p = r) as denoting the
propositional forms (p A q), (-p=7r), ((p Aq)V (—p = 1)), respectively.

(b) We could completely manage without the parentheses using the Polish notation.
In that case point 2° of the above definition would be modified as follows:

2* If A, B € VF(P) then -A, NAB, VAB, = AB, < AB € VF(P) (if the strings
A, B are propositional forms over the set P then so are the strings —A, A AB,
VAB, = AB and < AB)

For instance, in Polish notation the propositional form (p A q) V (—p = r) would be
written as
VApq= —pr

However cumbersome and hardly legible this expression may appear to us, it should
be realized that from the point of view of a computer assisted processing this aspect
is of almost no importance.

(¢) In spite of the names we have attached to the logical connectives pointing to
their intended role, they should be regarded as mere graphical symbols deprived of
any meaning for the moment. They will only acquire their usual meaning later on,
when we develop the semantics of Propositional Calculus.

(d) It should be noted that the signs A, B, C used to denote arbitrary propositional
forms, the sign P and the expression VF(P) denoting the set of all propositional
variables and the set of all propositional forms, respectively, etc., do not belong to
the language of Propositional Calculus— they are symbols or expressions of certain
metalanguage we use in the study of Propositional Calculus.

Let us turn reader’s attention to the point that VF(P) is the smallest set satisfying
conditions 1° and 2°. This inconspicuous requirement endows us with a powerful
tool for proving facts about propositional forms, namely with the proof method by
induction on complezity: In order to establish that all propositional forms have certain
property it is enough to show that the set of all propositional forms having this
property satisfies the above conditions 1° and 2°.

3.1.2 Theorem. Let M C VF(P) be any set of propositional forms satisfying the
following two conditions:
1° PCM
(every propositional variable p € P belongs to the set M)
2° If A,B € M then ~A, ANB, AV B, A= B, A& Be M (M is closed with
respect to the formation of propositional forms by means of logical connectives)
Then M = VF(P), i.e., every propositional form over P belongs to M.

The reader should compare the induction on complexity with the usual method
of induction, used in proving that certain property holds for all natural numbers:
Since the set N of all natural numbers is the smallest set containing 0 and closed with
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respect to the successor operation n +— n+1, in order to show that certain set M C N
contains all natural numbers, i.e., M = N, it is enough to show that 0 € M and, for
every n € M also n+ 1 € M. In the induction on complexity the role of the number
0 € N is played by the propositional variables p € P, and the role of the successor
operation is played by the logical connectives. Already in this moment it could be
anticipated that for the sake of induction proofs it would be desirable to minimize
the number of logical connectives for which the condition 2° has to be verified. We
will return to this point in the next paragraph.

3.2 Interpretations, Truth Tables and Logical Equivalence

Next to syntax we will develop the semantics of Propositional Calculus. Let us recall
that in Logic we take no account of the content of propositions, and the propositional
forms are indeed deprived of any content. Nevertheless, we can still examine the
situations under which they become true or false. These situations will be called in-
terpretations or truth evaluation and they will represent the way of assigning however
limited but still certain meaning to propositional forms.

We start by introducing the boolean algebraic operations on the two element set
{0,1} of the truth values 0 (false) and 1 (t¢rue), corresponding to the logical con-
nectives and denoted by the same symbols. They are given by the following tables:

- 1 A0 1 vV [0 |1 = 1 < 101
1 01(0 011011 0 11 0 1
11011 11111 1 1 1 1

In Propositional Calculus an interpretation or a truth evaluation is any mapping
I: P—{0,1},i.e., any assignment of truth values 0 or 1 to the propositional variables.
Intuitively, such an interpretation represents a possible situation described in terms
of the assignment of truth values to the propositional variables.

Every interpretation I: P — {0,1} will be extended to a mapping I: VF(P) —
{0,1}, denoted by the same symbol and still called an interpretation or a truth eval-
uation, by means of the following recursive definition:

I(~A)=-I(A) I(AAB)=I(A)AI(B) I(A= B)=I(A)= I(B)
I(AVB)=I(A)VI(B) I(Ae B)=I(A) < I(B)

for any A, B € VF(P), assuming that the values I(A) and I(B) have already been
defined. Instead of I(A) = 1 we say that A is true or satisfied in the interpretation
I; I(A) = 0 means that A is false in the interpretation I.
The reader should realize the following two facts:
e In each of the above equalities the signs -, A, V, =, < denote the logical
connectives on the left side while on the right side they denote the corresponding
boolean operations on the set {0, 1}.
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e The equality symbol = and the signs I, J, denoting arbitrary truth evaluations,
belong to our metalanguage and not to the language of Propositional Calculus
itself.

Just from this moment on, and by the virtue of the tables of the operations —, A, V,
= and < on the set {0, 1} of the truth values, the corresponding logical connectives
can rightfully bear their names of negation, conjunction, alternative or disjunction
(in nonexclusive sense), implication and equivalence, respectively.

It can be easily realized that the above recursive definition is redundant in some
sense. It would be enough to describe the extension of the mapping I: P — {0,1}
according to the negation — and one (and anyone) of the binary connectives A,
V, =; then the remaining equalities would be satisfied, as well. In other words,
a mapping I: VF(P) — {0,1} is (an extension of) an interpretation if and only
if it satisfies the equality I(—A) = —I(A), and one (and anyone) of the equalities
I(ANB)=I(A)ANI(B), I(AVvB)=I(A)VI(B), I[(A= B)=1I(A)= I(B) for all
A, B € VF(P). Then it automatically satisfies the remaining equalities, as well. As a
consequence, the notion of an interpretation (truth evaluation) could be defined in a
more elegant way, as a mapping I: VF(P) — {0, 1} preserving the operations of the
algebras (VF(P); A, V, ), ({0,1}; A, V, ), L.e., as a homomorphism

I: (VF(P); A,V ) — ({0,1}; AV, —)

Let us make the just discussed point more precise. We call two propositional
forms A,B € VF(P) logically equivalent if I(A) = I(B) for every interpretation
I: P — {0,1}; in that case we write A = B. (It should be realized that the sign
=, similarly as the signs A, B, C, P, I, J or the expression VF(P), etc., does not
belong to the symbols of the language of Propositional Calculus —it is a symbol of
our metalanguage, again.) The reader is asked to verify that the relation of logical
equivalence = is reflexive, symmetric and transitive, hence it is indeed an equivalence
relation on the set VF(P).

It is known that any of the pairs (-, A), (—,V), (-,=) forms a complete list of
logical connectives, i.e., any propositional form A € VF(P) is logically equivalent
to some propositional form A’ containing the same propositional variables as A and
involving just the logical connectives from one (and anyone) of the three pairs above.

Choosing the connectives =, A as the primitive ones, the remaining connectives
could be introduced as abbreviations for the propositional forms on the right:

A\/BEﬁ(ﬁA/\ﬁB)
A= B=-(AA-B)
A& B=-(AAN-B)A-(-ANAB)
Choosing — and V as primitive connectives we would have
ANB=-(-AV-B)
A= B=-AVB
A& B=-(—-(AV-B)V~-(-AV B))
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Finally, if our primitive connectives were = and =-, we would have

AANB=-(A= —-B)
AVB=-A= B
A& B=(A=-B)=—-(-A=B)

It follows that we could have used just the unary connective — and just one (and
anyone) from among the three binary connectives A, V, = in the recursive definition of
the notion of propositional form in the previous paragraph; the forth binary connective
< becomes superfluous in any case.

Additionally, we will make use of the logical equivalences of associativity of the
connectives A and V

(ANBYANC=AN(BAC) and (AVB)VC=AV(BVC)

for any propositional forms A, B, C' € VF(P). This allows us to omit the superfluous
parenthesis in conjunctions and alternatives of any finite number of propositional
forms and write simply AANBAC, AVBVC, A1 AN...NA,, B1 V...V B,, etc.

It is worthwhile to notice that we could manage with a single binary connective,
namely the Sheffer stroke | (the NAND operator) which can be expressed by means
of = and A, or by means of = and V as follows:

AB =-(AANB)=-AV-B

Conversely, the standard logical connectives =, A and V can be expressed in terms of
the Sheffer stroke as follows:
-A=AlA
ANB=(A|B)|(A|B)
AV B = (A|A)|(B|B)

The task to find the corresponding expressions for A = B and A < B is left to the
reader.

Another single logical connective capable to generate all the remaining ones is the
NOR operator t, also known as the Peirce arrow or Quine dagger, which is dual to
the Sheffer stroke. In terms of — and A, or = and V, respectively, it can be expressed
as follows:

ATBE—!A/\—'BE—\(A\/B)

The reader is asked to express the usual logical connectives =, A, V, = and < in
terms of the Quine dagger t, and, at the same time to find the expressions for the
Sheffer stroke in terms of the Quine dagger and vice versa.

3.3 Tautologies and Other Classes of Propositional Forms

Using the concept of interpretation we can single out several important classes of
propositional forms. A propositional form A € VF(P) is called
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a tautology if I(A) =1 for every interpretation I: P — {0,1}

a contradiction if I(A) = 0 for every interpretation I: P — {0,1}
satisfiable if I(A) = 1 for at least one interpretation 7: P — {0,1}
refutable if I(A) = 0 for at least one interpretation I: P — {0,1}
There is a twofold duality between the four notions just introduced:
the inner duality

e A is a tautology if and only if —A is a contradiction

e A is satisfiable if and only if = A is refutable

and the outer duality
e A is a tautology if and only if A is not refutable
e A is a contradiction if and only if A is not satisfiable

It can be easily seen that, for any propositional forms A, B, we have A = B if and
only if the propositional form A < B is a tautology.

The question whether a given propositional form A belongs to any of the four classes
defined above can be decided algorithmically using the method of truth value tables,
evaluating the truth values I(A) for all the interpretations I: P — {0,1}. In view of
the fact that, for an infinite set P, there are infinitely many such interpretations, it
is important that to that end it is enough to deal just with finitely many of them.

3.3.1 Theorem. Let A € VF(P) be any propositional form such that all the propo-
sitional variables occurring in A are included in the list p1,...,p,. Then I(A) =
J(A) for any truth evaluations I,J: P — {0,1} such that I(py) = J(px) for each
k=1,...,n.

In other words, the value I(A) of a truth evaluation I on a propositional form A
depends on the values of I on the finite set of propositional variables occurring in
A, only. However obvious and intuitively clear this fact may appear, we nonetheless
prove it, mainly in order to illustrate the proof method by induction on complexity.

Let us remark that the term proof will be, starting from the next paragraph, used
exclusively for formal proofs within the Propositional Calculus. They will form one
constituent of the subject of our study. For the sake of distinction, proofs of results
about Propositional Calculus (and later on about Predicate Calculus), led in our
metalanguage, will be referred to as demonstrations.

Demonstration. Denoting Q = {p1,...,pn} and
M={AcVF(Q): I(A) =J(A)}

we are to show that M = VF(Q). Since I and J coincide on the set @, we have
@ C M, which is the initial induction step 1°. In order to verify the induction
step 2°, assume that A, B € M, ie., A,B € VF(Q), and I(A) = J(A) as well as
I(B) = J(B). Then, as both I, J preserve the logical connectives,

I(-A) = —I(A) = —J(A) = J(=A4)
I(AANB)=I(A)ANI(B)=J(A)ANJ(B)=J(AAB)
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hence both =A, AAB € M. Similarly, we could show that AVB, A= B, A< Bec M,
too. However, in view of our previous accounts, it is clear that the induction step 2°
for the connectives V, = and < is not necessary to perform.

3.3.2 Example. Using the truth value table method, it can be easily shown that the
following propositional form

(p=(@=r)e((prg=T)

is a tautology. Denoting by L the propositional form p = (¢ = r) and by R the
propositional form (p A ¢) = r, we have

L

=

q=r
1

Q
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AS a consequence,
A= (B=C)=(AAB)=C

for any propositional forms A, B, C.

More important and interesting than filling in mechanically the above truth table
it is to realize what kind of logical law, called the Law of Ezportation, is expressed by
this tautology or by the above logical equivalence. The left hand form A = (B = C)
states that “if A, then B implies C”. The right hand form (A A B) = C states that
“A and B jointly imply C”. These two forms of statements are always equivalent:
going from the left to the right it is possible to join the two assumptions A, B to a
single assumption A A B; going from the right to the left it is possible to divide the
assumption A A B into its constituents A and B and apply them consecutively one
after the other.

3.3.3 Exercise. (Normal forms) A propositional form is called an elementary con-
junction if it has the shape B A ... A B, where each of the forms B; is either
a propositional variable or a negation of some propositional variable. A proposi-
tional form is called a disjunctive normal form if it has the shape Cy V...V Cy
where each of the forms C; is an elementary conjunction. Show that every propo-
sitional form A € VF(py,...,p,) is logically equivalent to some disjunctive normal
form A" € VF(p1,...,pn). To this end design an algorithmic method how to obtain
the disjunctive normal form A’ = A from the truth table of the form A.

Similarly, define the dual notions of an elementary disjunction and of a conjunctive
normal form and show that every propositional form is logically equivalent to some
conjunctive normal form.
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3.3.4 Exercise. (Boolean functions) Let A € VF(py,...,p,) be a propositional form
in propositional variables p1,...,p,. Then A can be turned into a boolean function
Fy:{0,1}™ — {0,1}, i.e., into an n-ary operation on the two-element set {0, 1} given
by Fa(ei,...,e,) = I(A) for any ey,...,e, € {0,1}, where I: {p1,...,pn} — {0,1}
is the interpretation on the set {p1,...,p,} such that I(py) = e for k =1,...,n.

(a) Show that for any propositional forms A, B € VF(p1,...,p,) we have Fy = Fp
if and only if A = B.

(b) Prove that there are exactly 22" boolean functions {0,1}" — {0,1} for each
n > 1. What about n = 0?

(¢) Show that for every boolean function F': {0,1}™ — {0, 1} there infinitely many
propositional forms A € VF(p1,...,p,) such that F' = Fgu.

3.3.5 Exercise. Let A € VF(py,...,pn) be a propositional form in propositional
variables p1,..., p, and By,..., B, € VF(P) be arbitrary propositional forms. We
denote by A(Bh,. .., B,) the propositional form obtained by substituting the forms
By,..., B, into the form A in places of the variables p1,..., p,, respectively. For
instance, if A is the form (p A =¢) = (¢ V r) in propositional variables p, ¢, r and
B, C, D are the propositional forms r V s, p = —r, ¢, respectively, then A(B,C, D)
denotes the form

(rvs)A=(p=-r)) = ((p=-r)Va)

(a) Demonstrate that if A is a tautology (contradiction) then A(By, ..., By) is also
a tautology (contradiction) for any Bj,..., By,.

(b) Give examples of a satisfiable (refutable) form A and of forms By,..., B, such
that A(Bi,...,By,) is not satisfiable (refutable).

3.4 Theories in Propositional Calculus

In common language the word theory usually refers to some interconnected system of
knowledge, consisting of statements about certain topic and including also a method-
ology of obtaining and verifying or refuting these statements. The statements or
propositions forming the “body of knowledge” of the theory could have been obtained
in various ways: some of them may express certain empirical facts established by
observation or experiments, some of them may be a part of common beliefs, tradition
or cultural heritage, some of them may be mere hypotheses to be verified or refuted
in the future, and, finally, some of them may be derived from any of the previously
mentioned ones as their logical consequences.

Following the leading intention of logic, we will ignore the content, methodology
and the overall character of a theory, we will neither distinguish which of its postulates
are true or false, which are firmly established and which are mere hypotheses, nor
take care of the way how all that happened. We will bring to the focus just a single
aspect of all such theories, namely the structure of logical inference, i.e., the way new
statements necessarily follow or can be derived from those made into the departing
postulates or axioms of the particular theory.
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Accordingly, a propositional theory or simply a theory is any set T C VF(P) of
propositional forms; its elements A € T are called the specific azioms or just the
azxioms of T. We warn the readers not to take this definition word for word, not
even within the framework of Propositional Calculus, let alone when speaking about
a broader perspective. It should rather be understood as stating that, within Propo-
sitional Calculus, a theory is given or uniquely determined by the set of its specific
axioms. Propositional Calculus will take care of the rest, i.e., of the structure of
logical inference, which is the same for all the theories.

An interpretation I: VF(P) — {0,1} is called an interpretation of the theory T if
I(A) =1 for each A € T, i.e., if all the axioms of T are true in the interpretation I.
Intuitively, an interpretation of the theory T represents a situation in which all the
axioms of the theory T, hence T itself, are satisfied.

A propositional form B is a logical consequence of the axioms of a theory T or just
a logical consequence of T if I(B) = 1 for every interpretation I of the theory T.
Alternatively we say that B is true valid or satisfied in T, or that T entails B. In
symbols we write T' F B. Intuitively, T F B means that, in every possible situation
in which all the axioms of the theory T are satisfied, B is satisfied as well.

Instead of () E B we write just F B; it means that B is true under every interpre-
tation I: P — {0,1}, in other words, B is a tautology.

As it follows from the theorem below, the question whether T' E B can be algo-
rithmically decided using truth value tables, for any theory T with just finitely many
specific axioms and each propositional form B € VF(P).

3.4.1 Theorem. Let T = {A;,...,A,} be a theory with finitely many specific ax-
ioms and B € VF(P). Then T E B if and only if the propositional form
(A1 A...NA,) = B is a tautology.

Demonstration. Assume that T F B. Let I: VF(P) — {0,1} be any interpretation.
Then either I(Ay) = 0 for at least one k = 1,...,n,or I(A;) = 1foreach k =1,...,n.
In the first case I(A; A ... A Ay) = 0, therefore,

I((AyN...NA,)=B)=1
In the second case I is an interpretation of the theory T, hence I(B) = 1 since T F B.
Then

I((AiN...NA,)=B)=1
again. Thus (A1 A... A A,) = B is indeed a tautology.

Conversely, assume that (A1 A...A A4,,) = B is a tautology, i.e., it is true in every
interpretation I. If I is an interpretation of T', then I(A; A... A A,) = 1. Thus

I((AyA...AAy) = B) =1

can happen only if I(B) = 1, too. It follows that T'F B.

In general, however, T' may have infinitely many specific axioms. Even in that case,
in order to show that B is not a logical consequence of T, i.e., T ¥ B, it is enough
to find a single interpretation I of T such that I(B) = 0. Is it the case, then we say
that (the validity of) B in T was refuted by the counterezample I. However, in order
to confirm that T' E B, the definition requires of us to determine the truth value I(B)
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for all interpretations of 7', and there are possibly infinitely many of them. Thus we
are seemingly facing an unrealizable task.

In mathematics, however, the usual way how to establish the validity of some
statement within some theory is by proving it from the axioms of the theory and
not by examining all the possible situations in which all these axioms are true and
checking the validity of the statement in each of those situations. Also in Propositional
Calculus we will develop the syntactic concepts of proof and provability with the aim
to get in grasp with the semantic concept of validity or truth by means of them.

3.5 Axiomatization of Propositional Calculus

In order to have a brief and concise axiomatization of Propositional Calculus we will
proceed as if the set VF(P) of all propositional forms were built of the propositional
variables by means of the logical connectives = and =, only. Thus the remaining
logical connectives are considered as certain abbreviations displayed in the previous
paragraph. An alternative axiomatization using the logical connectives —, A, V and
= can be found in the final Section 3.9.

3.5.1 Logical axioms. (4 axiom schemes)
For any propositional forms A, B, C, the following propositional forms are logical
azrioms:

(LAx1) A= (B=A)

(LAx2) (A= (B=0)=((A=B)=(A=0))
(LAx3) (A= B)= ((A= -B)=-A4)

(LAx4) ——A=A

Additionally, we have a single deduction rule or rule of inference:

3.5.2 Deduction rule: MoDUS PONENS

(MP) A A= B

(from A and A = B infer B)
3.5.3 Exercise. (a) Show that all the logical axioms are tautologies and explain their
intuitive meaning.
(b) Show that the deduction rule Modus Ponens is correct in the following sense:
If I: VF(P) — {0,1} is any interpretation and A, B € VF(P) are proposi-
tional forms such that I(A) = I(A = B) =1, then I(B) =1, as well.

A proof in the theory T' C VF(P) is a finite sequence Ay, A1, ..., A, of proposi-
tional forms such that every item Ay is either a logical axiom, or a specific axiom of
the theory T (i.e., Ax € T), or it follows from the previous items by the rule Modus
Ponens (i.e., there are ¢, j < k such that A; has the form A; = Ay).

A propositional form B is provable in a theory T if there is a proof Ag, A1,..., A,
in T such that its last item A,, coincides with B. In symbols, T' -+ B. Instead of ) - B
we write just - B; it means that B is provable from the logical axioms, only.
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3.5.4 Remark. The above axiomatization of Propositional Calculus is by far not the
only possible one. As already mentioned, an alternative axiomatization can be found
in Section 3.9. Both these axiomatizations contain infinitely many axioms (listed in
form of finitely many axiom schemes) and a single rule of inference. Such axiomati-
zations are referred to as Hilbert style axiomatizations featured by “many” logical
axioms and “few” deduction rules. On the other hand, Gentzen style axiomatizations
contain “many” rules of inference and just “few” logical axioms (or even none, replac-
ing a logical axiom A by the deduction rule  with meaning derive A out of nothing).
In general, Hilbert style axiomatizations are better suited for the description, study
and analysis of the formal logical system itself, while Gentzen style axiomatizations
are more effective in applications like logical programming or automatic theorem prov-
ing. However, as far as they serve as axiomatizations of the classical Propositional
Calculus, they are all equivalent in the sense that they produce the same family of
provable forms.

3.5.5 Exercise. Show that, for any propositional forms A, B, the following propo-
sitional forms are tautologies, and that they all are provable just from the logical
axioms:

(a) A=A
(b) A= -4
(¢c) "A= (A= B)
(d) (-B=-4)= (A= B)
(e) (A= B)= (-B=—A)
(f)

)

)

(g
(h
As an example (a rather deterring one) we show that for every propositional form A
the form in (a) is provable from the logical axioms.
1. A= (A=A)=A4)= (A= (A= A) = (4= 4))
(LAx2), taking A for both A and C and A = A for B
2. A= (A= A) = A)
(LAx 1), taking A for A and A = A for B
3. (A= (A= A4)= (A= A)
follows from 1 and 2 by (MP)
4. A= (A= A)
(LAx 1), taking A for both A and B

5. A=A
follows from 3 and 4 by (MP)

3.5.6 Exercise. Sow that the axiom schemes (LAx3) and (LAx4) can be replaced
by a single axiom scheme

(LAx5) (A= B) = (A= —B) = A)
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To this end show that every instance of the scheme (LAx5) is provable from some
instances of the schemes (LAx1), (LAx2), (LAx3), (LAx4), and vice versa, all in-
stances of the schemes (LAx3), (LAx4) are provable from some instances of the
schemes (LAx 1), (LAx2), (LAx5).

3.6 The Soundness Theorem

Having introduced the axiomatization of Propositional Calculus we are facing the
task to establish that it is sound or correct in the following sense: For every theory
T C VF(P), all the propositional forms provable in T" are satisfied in 7. Otherwise it
could happen that for some propositional form B provable in T it would be possible
to find an interpretation I of T such that I(B) = 0. Such an I would represent a
situation in which all the axioms of T were satisfied, nevertheless, B were false. Thus
we could be able to prove, from the axioms of T, some conclusions contradicting
these axioms, which would be a disaster witnessing a collapse of our axiomatization.
Therefore it is of crucial importance that we have the following result:

3.6.1 Soundness Theorem. Let T'C VF(P) be a theory. Then, for every proposi-
tional form B € VF(P), if T+ B then T F B.

Demonstration. Let T'F B and Ag, A1, ..., A, be a proof of B in T. We will show
that I(Ag) = 1 for every interpretation I of the theory T and each k < n. Then,
of course, I(B) = 1, since B is A,. Each Ay is either a logical axiom, in which
case I(Ay) = 1 for every interpretation I, or a specific axiom of T, in which case
I(Ag) =1 as I is an interpretation of T, or Ay follows from some previous items A;,
Aj by (MP). Assuming that we already have proved that I(A4;) = I(4;) =1, we can
conclude I(Ag) = 1, too, since, as we already have noted in Exercise 3.5.3 (b), the
rule (MP) is correct.

3.6.2 Remark. Let us turn the reader’s attention to the fact that — however simple
and transparent the above argument might appear —it contains a kind of vicious
circle. In the demonstration of the Soundness Theorem we have been using logical
deduction and inference within the natural language extended by some fairly simple
mathematical notation. Thus we have used in an informal way the same logical means
the soundness of which we wanted to establish within the formalized Propositional
Calculus. Strictly speaking, the formal counterpart of the informal logical means
we have been using goes even beyond Propositional Calculus: since our arguments
contained some quantification, they interfered already with the Predicate Calculus.
It is important to realize that we are unable to prove the Soundness Theorem out
of nothing, without assuming some minimal logical fragment of natural language
as granted. Thus what we have achieved is nothing more and nothing less than
the understanding and realization that our formal axiomatization of Propositional
Calculus is in good accord with the logical structure of deduction and inference within
the natural language.

Later on we will also establish the converse of the Soundness Theorem.
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3.6.3 Completeness Theorem. Let T C VF(P) be a theory. Then, for every
propositional form B € VF(P), if TE B then T + B.

3.6.4 Remark. It is illuminating to compare the status of the Completeness The-
orem with that of the Soundness Theorem. As we have seen, the demonstration of
the Soundness Theorem was fairly simple. On the other hand, as we shall see later
on, the demonstration of the Completeness Theorem will be considerably more in-
volved. While the failure of the Soundness Theorem would cause a collapse of our
axiomatization of Propositional Calculus, the consequences of a possible failure of the
Completeness Theorem would be, at least at a glance, less dramatic: It would just
mean that our axiomatization of Propositional Calculus is not powerful enough and
we should look for some additional logical axioms and/or deduction rules extending
our original list in order to achieve its completeness. Then, however, we would have
to face a more delicate question: Is it at all possible to achieve completeness in our
axiomatization without destroying its soundness? Namely, the Soundness Theorem
and the Completeness Theorem together answer this question affirmatively and guar-
antee that the relation between the syntax and semantics of Propositional Calculus
is carefully balanced.

Later on, when dealing with an analogous issue for Predicate Calculus, we will
quote an example of certain its fairly natural fragment not admitting any axiomati-
zation satisfying both the Soundness and the Completeness Theorem.

3.7 The Deduction Theorem and Its Corollaries

On the way to the demonstration of the Completeness Theorem we are going to state
a handful of results which are of independent interest in their own right. In their
demonstrations we will use the notation A &~ B, expressing that the characters A and
B denote the same propositional form. The symbol ~ belongs to our metalanguage
and not to the language of Propositional Calculus itself, similarly as the symbols A,
B, P, VF, I, =, etc.

3.7.1 Deduction Theorem. Let T  C VF(P) be a theory and A,B € VF(P) be
propositional forms. Then T+ A= B if and only if TU{A}F B.

Demonstration. Let T - A = B. Then the more T U {A} - A = B. Obviously,
TU{A} F A, from which we get T U {A} + B by (MP). Namely, if Cy,C1,...,C, is
a proof of A= B in TU{A}, then Cy,C1,...,Cy, A, B is a proof of B in TU{A}.
Conversely, let T U {A} + B. First we take care of the following two trivial
cases:
(a) B is a logical axiom or B € T. Then B, B = (A = B) (LAx1), A= Bisa
proof of A= Bin T.

(b) B~ A. Then + A = A (Exercise 3.5.5 (a)), hence the more T - A = A.
Otherwise there must be a proof By, Bi,...,B, of B in the theory T'U {A} such

that n > 2 and B,, (i.e., B) follows from some previous items of this sequence by
(MP). We will proceed by induction according to n. To this end we assume that the
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needed conclusion is valid for all proofs Cy,Cy,...,Cy, in T U {A} where m < n.
Let j,k < n be such that B; ~ (B, = B,,). Then both By,...,B; and By, ..., By
are proofs in T'U {A}. By the induction assumption we have T' - A = By, i.e.,
T+A= (By,= By,),as wellas T+ A = By. Then

(A= (By = B,)) = (A= By) = (A= B,))
is (LAx2), and by (MP) we consecutively get

TH(A= By)= (A= B,)
THA= B,

ie,THA= B.

The reader should notice that it is the “harder” implication
it TU{A}+F B then TH A= B

which is frequently used in mathematical proofs as well as in many deductive ar-
guments elsewhere. A typical direct proof of the implication A = B out of a list
(theory) T of assumptions (axioms) starts with the “ritual” formulation: “Let A”,
or “Assume that A”. This is nothing else than extending the axiom list T by a new
axiom A. We continue by a sequence of statements C1,...,C, formed according to
some deductive rules and finish once we succeed to arrive at the final term B. How-
ever, strictly speaking, what we have produced that way is a proof of B within the
theory T'U {A} and not a proof of the implication A = B in T as we claim. The
Deduction Theorem shows that this natural method of argumentation is legitimate
within Propositional Calculus, justifying our claim.

Another way of proving a statement out of some list of assumptions is the proof by
contradiction. Instead of proving A in T directly, we produce a contradiction with the
axioms of T" out of the negation of A. Also this method is legitimate in Propositional
Calculus.

A theory T is called contradictory or inconsistent if there exists some propositional
form A such that both T - A and T + —A. Otherwise, T is called consistent.
From Exercise 3.5.5 (c) it follows that every propositional form B is provable in an
inconsistent theory T

3.7.2 Corollary on Proof by Contradiction. Let T C VF(P) be a theory and
A € VF(P) be a propositional form. Then T A if and only if the theory T U{—A}
is contradictory (inconsistent).

Demonstration. Let T+ A. The more TU{—-A} F A. Since, clearly, TU{-A} F A,
the theory T'U {—A} is contradictory.

Conversely, let the theory T'U {—A} be contradictory. Then every propositional
form is provable in this theory; in particular, T U {—A} - A. Then T+ —-A = A by
the Deduction Theorem. According to Exercise 3.5.5 (h), - (mA = A) = A, and the
more T F (-A = A) = A. Using (MP) we get T - A.
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Sometimes we are unable to find a proof of a statement B in a theory T, however,
we are able to prove B under some additional assumption A in one way, and in
another way under the opposite assumption —=A. Then, all the same, it follows that B
is provable in T'. This way of argumentation is legitimate in Propositional Calculus,
as well.

3.7.3 Corollary on Proof by Distinct Cases. Let T' C VF(P) be a theory and
A, B € VF(P) be propositional forms. Then T U{A} + B and T U{-A}+ B if and
only if T+ B.

Demonstration. Assume that TU {A} F B and T U {—=A}  B. According to the
Deduction Theorem it follows T+ A = B and T + -A = B. By Exercise 3.5.5 (g)
we have

F(A=B)= ((-A= B)= B)

and applying (MP) twice we get T + B.
Conversely, let T+ B. Then, trivially, T U {A} - B, as well as T U {-A} F B.

3.7.4 Exercise. Let T C VF(P) be a theory and As,...,A,, B € VF(P) be propo-
sitional forms such that T = A1V...VA,. Show that T - B if and only if TU{A;} + B
foreachi=1,...,n.

3.8 The Completeness Theorem

We start with a technical lemma. Given any interpretation I: VF(P) — {0,1} and
a propositional form A € VF(P) we denote

A,%{A if I(A) = 1

—A i I(A) =0

In other words, A’ is namely that member of the couple A, =A which is true in I,
ie., I(AT) =1.

3.8.1 Interpretation Lemma. [A. Church] Let Q = {p1,...,pn} C P be a finite set
of propositional variables and A € VF(Q). Then for any interpretation I: VF(P) —
{0,1} we have

{p{""’p/{l} F'AI

Demonstration. By induction on complexity of A:

(a) If A ~ p € P, then the statement means that {p} - p, if I(p) = 1, or
{=p} F —p, if I(p) = 0. In both cases we get the needed conclusion.

(b) Let A ~ —B and our conclusion be true for B. Then B € VF(p1,...,pn).

If I(A) = 1, then I(B) = 0 and A’ ~ A ~ =B ~ B!. By the assumption,
{p{,...,pr} F Bl ie., {p{,...,pfl} F A~

If I(A) =0, then I(B) = 1, B! ~ B and A! ~ =A ~ ——B. By the assumption
{pl,....pL} = B ie, {p],...,pL} b B. According to Exercise 3.5.5(b) we have
F B = ——B, and by (MP) we get {p{, e ,pfl} F—-—-B, ie., {p{,...,pfl} AL
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(¢c) Let A =~ (B = () and for B, C the conclusion is true. Then B,C €
VFE(p1,...,pn). We distinguish three cases:

1. I(B) = 0. Then I(A) = (B = C) = 1, i.e., A ~ A. Further, B! ~ —B, hence,
by the induction assumption, {p{, . J){L} F —=B. According to Exercise 3.5.5(c)
we have - =B = (B = () and by (MP) we get {p{,...,p,ﬂ} F B = C,ie,
{p{,...,p{l} F AL

2. I(C) = 1. Then C! =~ C and I(A) = I(B = C) = 1, hence Al ~ A. By the
induction assumption, {p{,...,pfl} F C. (LAx1) gives F C = (B = (), and by
(MP) we get {p{,...,pL} - B=C,ie., {p{,...,pL} - AL

3. I(B)=1,I(C) =0. Then B! =~ B, C! ~ —~C and I(A) = I(B = C) = 0, hence
Al ~ = A. By the induction assumption, {p{, e ,pfl} F B and {p{, e ,pfb} F-C.
Exercise 3.5.5(f) gives F B = (=C = —(B = ()). Using (MP) twice we get
{p{,...,pfl} F-(B=C),ie., {p{,...,p{l} AL

3.8.2 Exercise. Let Q = {p1,...,pn} C P be a finite set of propositional variables
and A € VF(Q). Let

TE(A) = {I: Q = {0,1}: I(A) =1} = {I1,..., I,,}

denote the set of all truth evaluations I on the set of propositional variables ) such
that A is true in I. Obviously, m < 2™. For each I € TE(A) we denote by

Cr Zp{/\.../\pfl
the elementary conjunction corresponding to I. Finally, we put
A =Cyp, v...v(Cr,

Give reasons for the claim that A’ € VF(Q) is a disjunctive normal form logically
equivalent to A (see Exercise 3.3.3).

A special case of the Completeness Theorem, due to Emil Post, deals with the prov-
ability of tautologies.

3.8.3 Post’s Completeness Theorem. For every propositional form A € VF(P),
we have F A if and only if F A; in other words, A is a tautology if and only if A is
provable just from the logical axioms.

Demonstration. We just show that every tautology is provable from the logical
axioms; the converse follows from the Soundness Theorem.

Let A € VF(py,...,pn). Since A is a tautology, I(A) = 1 and A ~ A for every
truth evaluation I: {p1,...,pn} — {0,1}. By the Interpretation Lemma 3.8.1,

For any truth evaluation J: {pi,...,pn—1} — {0,1}, both possibilities I (p,) = 1,
I (pn) = 0 jointly with the condition Iy (px) = La(pr) = J(px), for k < n, produce
interpretations I, Is: {p1,...,pn} — {0,1}. Therefore, both

{p{....pl_1pa}FA  and  {p{....p) 1, -p.}A
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According to Corollary 3.7.3 on Proof by Distinct Cases this implies
{p'{,...,p,{_l} A

Repeating this procedure we finally get - A.

A theory T'C VF(P) is called complete if it is consistent and for every propositional
form A € VF(P) we have T F A or T + —A. In other words, T is complete if and only
if for every propositional form A exactly one of the two possibilities T+ A, T + -A
takes place.

Next we show an alternative version of the Completeness Theorem.

3.8.4 Completeness Theorem. [Alternative version] Every consistent theory
T CVF(P) has an interpretation.

The reader is asked to realize that also the other way round, if a theory has an
interpretation then it is necessarily consistent; in other words, a contradictory theory
has no interpretation. (This is the alternative version of the Soundness Theorem.)

Demonstration. Any interpretation I of a consistent theory 1" has to satisfy

I(A4) = 1 ?fTI—A
0 if TH-A

Since T is consistent, T+ A and T F —A cannot happen at once for any A € VF(P).
On the other hand, unless T is complete, we cannot guarantee that we always have
either T+ Aor T F —A, i.e., the value I(A4) need not be defined for every A € VF(P).
However, if T is complete then the above casework defines an interpretation of T,
indeed. In other words, a complete theory T" has exactly one interpretation.

In the general case, since the set VF(P) of all propositional forms is countable,
it allows for some enumeration VF(P) = {Ag, A1,...,4,,...}. Now we define a
sequence of theories Ty, Th, ..., Ty, ... recursively:

T, =T and Ty = {Tn U{A4,} ?f T, U{A,} ?s consiste.nt
T, U{-A,} if T,,U{A,} is contradictory

Obviously, T, C T}, 41 for each n. Let us show by induction on n that every 7;, is a
consistent theory. Ty = T is consistent by the initial assumption. Assuming that T}, is
consistent, T;,41 could be inconsistent only in case that both the theories T,, U {A,},
T, U{—-A,} were contradictory. By the Corollary on Proof by Contradiction this
would mean that both T,, + =A,, and T,, - A,,. However, this is impossible, as T;, is
consistent. R

Next we show that T = (J,, oy
T is consistent. Indeed, if T were inconsistent then already some of the theories T,
would inconsistent as well (this is left to the reader —see also the demnostration of

T, is a complete theory. It is easy to realize that

the Compactness Theorem 3.8.7). It remains to show that, for each n, either T A,
or T+ —A,. This is equivalent to showing that Tt/ —A,, implies T+ A,,. f T ¥ -A,
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then 7'U {A,} is consistent, and T, U {A,} C T U {A,} is consistent, as well. Then
An € Thy1, hence Ty, 11 F Ay, and, since Ty, 41 C T, also T+ A,,.

Thus the unique interpretation I of the complete theory T is an interpretation of
T, as well.

3.8.5 Remark. The reader should notice that the above casework is not necessarily
the only way how the sequence of theories (T}, ),en extending T', leading to a complete
theory T = U7, and the interpretation I could be defined. In each step when
neither T, + A, nor T, - —A,,, we are free to choose either T,,11 = T,, U {A,} or
Tn+1 = Tn U {ﬁAn}

3.8.6 Exercise. Let I: P — {0,1} be any truth evaluation. Let us denote
Th(I) = {p":pe P} ={pe P: I(p) =1} U{-p:p€ P, I(p) =0}

the theory of I. Demonstrate the following facts:
(a) Th(I) is a complete propositional theory.
(b) For any propositional form A € VF(P) the following conditions are equivalent:
(i) I(A)=1
(ii) Th(I)F A
(iii) Th(I)E A

Now, we can prove the original form of the Completeness Theorem. We state it in
a way comprising the Soundness Theorem, as well.

3.8.7 Completeness Theorem. Let T C VF(P) be a theory. Then, for every
propositional form B € VF(P), T E B if and only if T - B.

Demonstration. If T + B then T' E B by the Soundness Theorem. To show the
converse, assume that 7' F B, nevertheless T' I/ B. By the Theorem on Proof by
Contradiction, this means that the theory T'U{—B} is consistent. Then, according to
the Alternative Version of the Completeness Theorem, TU{—B} has an interpretation
I. Then I is an interpretation of the theory T such that I(-B) =1, i.e., I(B) = 0.
However, since T E B, we have J(B) = 1 for every interpretation J of T’ in particular,
I(B) = 1. This contradiction proves that T+ B.

Finally, let us record the following consequence of the Completeness Theorem.

3.8.8 Compactness Theorem. Let T C VF(P) be a theory. Then T has an inter-
pretation if and only if every finite subtheory Ty of T has an interpretation.

Demonstration. By the Completeness Theorem, T has an interpretation if and only
if T is consistent. Similarly, every finite subtheory 7y C T has an interpretation
if and only if every finite subtheory Ty C T is consistent. Thus it is enough to
realize that T is consistent if and only if every finite subtheory Ty of T is consistent.
Obviously, if T is consistent then so are all its subtheories (and not just the finite
ones). The other way round, if T is inconsistent, then any proofs of some couple



3.9 AXIOMATIZATION OF PROPOSITIONAL CALCULUS USING FOUR CONNECTIVES 63

of contradicting propositional forms B, =B in T involve just finitely many specific
axioms of T. Putting them together we obtain a finite subtheory Ty C T which is
already contradictory.

We have formulated and proved the Compactness Theorem in Propositional Cal-
culus mainly with the aim to prepare the ground for the Compactness Theorem in
Predicate Calculus to come later on. However, the Propositional Calculus version of
the Compactness Theorem lacks the importance and the plentitude of consequences
of its Predicate Calculus version.

3.9 Axiomatization of Propositional Calculus Using
Four Logical Connectives

For completeness’ sake we include the axiomatization of Propositional Calculus using
all the usual logical connectives =, A, V and =-; the remaining connective < is
introduced via the logical equivalence

AeB=(A= B)AN(B=A)

i.e., the left hand expression serves as the abbreviation for the right hand one. The
corresponding list of logical axioms consists of ten axiom schemes. The only inference
rule is Modus Ponens, again.

3.9.1 Logical axioms. (10 axiom schemes)
For any propositional forms A, B, C, the following propositional forms are logical
axioms:

(LAx1) A= (B=A)

(LAx2) (A= (B=0)=((A=B)=(A=0))
(LAx3) (AAB)=A

(LAx4) (AAB)=B

(LAx5) A= (B=(AAB))

(LAx6) A= (AVB)

(LAxT) = (AV B)

(LAx8) ( A=C)AN(B=C))=((AvB)=20))
(LAx9) ((A= B)A (A= -B))=-A)

(

LAx10) AV -A

3.9.2 Deduction rule: MopuUs PONENS

A A B
(MP) % (from A and A = B infer B)

3.9.3 Exercise. Show that all the above logical axioms are tautologies and explain
their intuitive meaning.



4 First-Order Logic

Compared to Propositional Calculus, in First-Order Logic we relieve to some extent
the requirement to abstract from the content of particular statements and arguments
and to concentrate upon their form, only. Namely, we admit that all the statements
and arguments deal with some objects, that these objects have some properties or
enter some relations, that some objects are explicitly mentioned by their names and,
finally, that from given objects some new objects can be produced by means of certain
operations. Though this shift of focus makes sense equally for natural languages as well
as for languages of scientific theories, we will restrict our attention to the languages
of mathematical theories exclusively, where such an approach is rather natural and
its fruitfulness can be demonstrated in a convincing way. On the other hand, the
reduction of the logical structure of natural languages as well as of the languages
of most scientific theories to its fragment fitting within the framework set by the
First-Order Logic would turn out rather artificial.

First-Order Logic, also called (Lower) Predicate Calculus, examines the structure of
arguments and proofs used in mathematics, more precisely in mathematical theories
describing classes of mathematical structures formed by sets of objects endowed with
various finitary operations and relations, singled out by certain axioms. That way
First-Order Logic is mathematical logic both by its methods as well as by its subject.

We intend to develop and present the First-Order Logic in a way parallel, as much
as possible, to our previous development and presentation of Propositional Calcu-
lus. Consequently, the reader should see clearly both the similarities as well as the
differences between these two branches of mathematical logic.

4.1 First-Order Languages and First-Order Structures

A typical mathematical structure consists of a nonempty base set A of objects, equipp-
ed with some finitary operations, some distinguished elements and some finitary re-
lations.

4.1.1 Example. Number systems with operations of addition +, multiplication -,
distinguished elements 0 and 1 and (with the exception of complex numbers) the
ordering relation < form mathematical structures commonly denoted as follows:

Natural numbers (N; +,-,0,1, <)
Integers (Z; +,-,0,1, <)

Rational numbers (Q; +,-,0,1, <)
Real numbers (R; +,-,0,1, <)
Complex numbers (C; +,-,0,1)

64



4.2 TERMS AND FORMULAS 65

A first-order language L = (F,C,R,v) is given by some (maybe void) sets F,
C, R of functional (operation) symbols, constant symbols and relational (predicate)
symbols, respectively, together with an arity function (signature) v: FUR — N,
assigning to any symbol s € FUR its arity v(s) > 1. These are the specific symbols of
L. Constant symbols are sometimes considered as nullary functional symbols, i.e., as
elements f of the set F' subject to v(f) = 0 (in that case the set C' does not explicitly
occur in the description of L).

All first-order languages contain common logical symbols:

e Object variables (or just variables): x, y, z, u, v, w, xg, X1, T2, ..., ¥, Yy, ...

e Logical connectives: = (not), A (and), V (or), = (if ...then or implies),

< (if and only if) (two would suffice)

e Quantifiers: V (universal quantifier), 3 (ezistential quantifier) (one would suf-

fice)

e Equality sign: =

e Auxiliary symbols: (, ) (parentheses), , (comma) (they could be avoided)

4.1.2 Remark. At a glance it could seem that we should require the sets F', C, R to
be at most countable, since it makes no sense to admit that the language L contains
uncountably many specific symbols. Such a restriction, however, would bring us no
technical advantage. More important, as we shall see later on, e.g., when dealing with
various diagrams of structures, the methods and results of the study of uncountable
languages have applications even for structures of countable first-order languages.

A first-order structure, i.e., a structure of some first-order language L = (F,C, R, v),
briefly, an L-structure, A = (A; I) consists of a nonempty set A, called base set or
underlying set or carrier of A, and an interpretation I of the specific symbols of L in
A:

e for f € F, such that v(f) =n, fl: A" — A

(each n-ary operation symbol is interpreted as an n-ary operation on A)

o forceC, cfeA

(each constant symbol is interpreted as some distinguished element of A)

e for r € R, such that v(r) =n, rl C A"

(each n-ary relation symbol is interpreted as an n-ary relation on A)

Instead of s! we frequently write s or just s for any specific symbol s.

4.2 Terms and Formulas

Terms of a first-order language L, briefly L-terms, are composed of variables, constant
symbols and functional symbols of L. The set Term(L) of all L-terms is the smallest
set such that

1° x € Term(L) for each variable x (every variable is a term);

2° ¢ € Term(L) for each ¢ € C (every constant symbol is a term);
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3 if feF,v(f)=mn,and t1,...,t, € Term(L), then f(t1,...,t,) € Term(L)
(if f is an n-ary functional symbol and t¢1,...,t, are terms, then f(¢1,...,t,) is
a term, as well).

This is a recursive definition. Terms in 1°, 2°) i.e., variables and constant symbols,
are called atomic terms. In order to prove that some set of L-terms contains all the
L-terms, it suffices to show that it fulfills all the three conditions 1°, 2° and 3°.

For a binary operation symbol f we usually write ¢1 fto instead of f(t1,t2) in 3°.

Constant terms are terms containing no variables. If all the variables occurring
in a term ¢ are contained in the list x1,...,zy, we write ¢(x1,...,2x). There is one
exception: writing ¢ doesn’t necessarily mean that ¢ is a constant term.

Given an L-structure A = (4; I) and a term ¢(x1,...,xx), the interpretation of
tin A is a k-ary operation t/: A*¥ — A defined on any k-tuple (ai,...,ax) € A* as
follows:

1° if ¢ is the variable x; where i < k, then t!(ay,...,a;) = a;;

2° if ¢ is a constant symbol ¢ € C, then t!(aq, ..., ax) = ¢';

3° if t is of the form f(ty,...,t,) where f € F, v(f) = n, and the interpretations
t§ of the terms t1(z1,...,2k), ..., tn(z1,...,z) are already defined, then

th(ar,...,ar) = f (ti(a1,...,a),... . th(as,. .., ax))

In particular, the interpretation of a constant term ¢ is always an element ¢! € A.
Instead of t! we frequently write t* or just ¢ for any term ¢.

Formulas of a first-order language L, briefly L-formulas are built of atomic formulas
by means of logical connectives and quantifiers. Atomic formulas of the language L
are expressions of the form ¢t; = t5 where ¢y, to are arbitrary L-terms, and r(tq, ..., t,)
where r € R is a relational symbol, v(r) = n, and ty,...,t, are arbitrary L-terms
(instead of r(t1,t2) we frequently write 1 rt2). The set Form(L) of all L-formulas is
the smallest set such that

1° if ¢ is an atomic formula then ¢ € Form(L) (every atomic formula is a formula);

2° if ¢, € Form(L) then —¢, (¢ A¢), (¢ V), (p = ), (¢ < ) € Form(L)
(if ¢, ¥ are L-formulas then so are =, (¢ A ), (9 V¥), (¢ = 1), (¢ & ¥));

3° if ¢ € Form(L) and « is a variable, then (Vx)p, (3z)p € Form(L)
(for any formula ¢ and variable z, the expressions (Vz)p, ()¢ are formulas).

This is a recursive definition, again. In order to prove that some set of L-formulas
contains all the L-formulas, it suffices to show that it fulfills all the three conditions
1°, 2° and 3°.

Similarly as in Propositional Calculus, we tend to omit unnecessary parentheses.
On the other hand, in order to promote readability, we sometimes use parentheses
not required by the above definition. For instance, the modified expressions —(¢p),
(¢) A (¥), ete., could sometimes be better legible than the “rigorous” formulas -,
@ A1, ete., respectively. Atomic formulas of the form ¢; = ¢y are called identities.
The conjunction of two identities (£; = t3) A (t2 = t3) is frequently abbreviated to
t; = to = t3. Instead of —(t; = t2) we usually write t1 # to; —(¢1 rt2) is sometimes
abbreviated to t1 #ts.
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Consecutive quantifications with the same quantifier (Qx1)...(Qx,) will be ab-
breviated to (Qz1,...,x,). For instance, we will write (Vz1,...,2,)(3u,v)(V2)p
instead of (Vx1)...(Vz,)(3u)(3v)(V2)e.

An occurrence of a variable x in a formula ¢ is simply any occurrence of the symbol
x in some of the atomic formulas out of which ¢ is built. Such an occurrence is called
bounded if it falls under the range of some quantifier, otherwise it is called free.

4.2.1 Example. In the formula ¢
Va)z+y=y+a) A Fy)(Vu)(z <y+2)

of the first-order language containing a binary operation symbol + and a binary
predicate symbol < both the occurrences of z in the atomic formula z +y =y + =
are bounded while its occurrence in z < y+ z is free, both the occurrences of y in the
atomic formula z + y = y + = are free, while its occurrence in z < y + z is bounded,
the occurrence of z in the atomic formula x < y + z is free, finally, the variable u has
no occurrence in ¢.

Sentences or closed formulas, sometimes also referred to as statements, are
L-formulas containing no free variables. If all the variables occurring freely in a
formula ¢ are contained in the list z1,...,z,, we write p(z1,...,2,). Exception:
writing ¢ doesn’t necessarily mean that ¢ is a closed formula.

The following definition of the satisfaction relation is due to Alfred Tarski. The
satisfaction of an L-formula ¢(z1,...,2,) by the elements a;,...,a, € A of some
L-structure A = (A; I) is denoted by A E ¢(ay,...,a,) and read as p(a,...,a,) is
satisfied or true in A. It is defined recursively:

o if pist; = ty, then A F p(ay,...,a,)ifand only if t{(aq,...,a,) = th(as,... an)

o if pisr(ti,...,tm), then AF p(a,...,a,) if and only if

(ti(ar,...,an), ..., th(ar,... a,)) €77
o if pis =), then AF ¢(ay,...,a,) if and only if it is not true that
AEY(ay,... a,)
o if pisy Ay, then AF p(ay,...,a,) if and only if both
AEY(ay,...,a,) and AF x(a1,...,a,)
o if pisyVy, then AF p(aq,...,a,) if and only if
AEY(ay,...,a,) or AE x(ay,...,a,) (in the nonexclusive meaning)
o if pisy = x, then AFE p(ay,...,a,) if and only if
from A E ¢(aq,...,a,) it follows that A F x(a1,...,a,)

o if pisy & x, then AE p(aq,...,a,) if and only if the conditions
AEY(ay,...,a,) and AF x(ai,...,a,) are equivalent

o if ¢is (Va)y, then AF p(aq,...,a,) if and only if
AEY(a,aq,...,a,) for every a € A

o if ¢ is (Fz)vy, then AF p(aq,...,a,) if and only if
AE Y(a,aq,...,a,) for some a € A
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The above list can be given an easier to survey and remember form rewriting it
using the same symbols for logical connectives, quantifiers and the relation of equal-
ity, both in the first-order language L we are dealing with, as well as in the common
English (which is a part of our metalanguage). In order to avoid the impending
confusion, such an attitude is usually introduced with the phrase “by abuse of no-
tation”. The reader should carefully inspect the rewritten version and identify the
corresponding role of every particular occurrence of the logical symbols in the new
list below:

AE (t; =t9)(ar,...,an) & AEt1(a1,...,a,) =t2(ar,...,a,)
.Alir(tl,... tm)(at, ... an) & AEr(ti(ar,...;an), . ytm(ar, ... ap))
“p(ay,...,an) & 2(AEplal,...,a,)) & AF p(al,...,a,)
Al=(<p/\¢)(a1,...,an) (.Alz@(al,...,a”)/\fl#w(al,...,an))
A?((p\/d))(al,...,an) (A#(pal,...,an)\//lﬁ¢(a1,...,an))
E(e=v)(a,...,an) & (AIZcpal,...,an):>.A|:w(a1,...,an))
FEleev)(a,....an) & (.AIZQOal,...,an)@.Alzw(al,...,an))
F(Va)o(z,a1,...,a,) & (Va€ A)(AF o(a,ar,...,a,))
Fx)p(z,a1,...,a,) & (HaeA)(Ahcp(a,al,...,an))

For o(21,...,Zn,Y1,---,Ym) and ay,...,a, € Awewrite AF @(a1,...,0n, Y1, Ym)
if and only if A E ¢(ay,...,an,b1,...,by) for all by, ... b, € A, ie., if and only if
AE Vyi,. . ym)e(ar, ... ans Y1, -, Ym). In particular, A F ¢(x1,...,x,) means
that A E ¢(ay,...,a,) for all ay,...,a, € A, e, AE Va1,...,20)0(X1,...,Zp).
Thus the expression A F ¢ has clear meaning even if the formula ¢ is not closed.

4.3 First-Order Theories and Models

A first-order theory T, i.e., a theory in a first-order language L, is represented by and
identified with the set of its specific azioms T C Form(L). From now on, as a rule,
a first-order theory will be referred to simply as a theory. An L-structure A is said
to satisfy the theory T or to be a model of T if A satisfies all the axioms of T. We
write A E T'; thus we have

AET if and only if AFE ¢ for every ¢ € T

We say that a formula ¢ is a logical consequence (of the axioms) of the first-order
theory T', or that 1 is true in T if 9 is true in every model A of the theory 7. In
that case we write T F 1. Thus we have

TkEy ifandonly AFE ¢ for every model AET

Our goal is to describe the semantic notion of truth or satisfaction or logical con-
sequence in terms of the syntactic notion of provability. This will take part in the
next section. However, before turning our attention to that point, it is desirable to
get some acquaintance with a handful of important examples of first-order theories
and their models.
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Preliminarily, we can divide first-order theories into the following two categories:

(a) First-order theories describing a variety of different structures sharing the same
first-order language and singled out by some common properties formulated as axioms
of the corresponding theory. Some subclasses of the class of all models of that theory
can be described in terms of some additional axioms, as well as by some properties
not formulated in terms of that first-order language. From the theories listed bellow
the Theory of Groups, various Theories of Rings and Fields, Vector Spaces, Theories
of Order, Boolean Algebras and the Theories of Ordered Rings and Fields belong to
this family.

(b) First-order theories attempting to describe a single mathematical structure “as
completely as possible”. As we shall see later on, such attempts are unattainable,
except for some trivial cases. Our first example of this kind is furnished by Peano
Arithmetic, aiming to fully describe the structure of all natural numbers with the
addition and multiplication. The second example includes the Zermelo-Fraenkel Set
Theory with the Axiom of Choice (in a not quite precisely delineated version) which
should possibly faithfully grasp the Universe of Sets.

4.3.1 Groups. The Theory of Groups or Group Theory has several alternative ax-
iomatizations in slightly differing first-order languages. A group is simply a model of
Group Theory.

(a) In the first-order language containing a binary operation symbol - (multiplica-
tion), a constant symbol e (unit or neutral element) and a unary operation symbol
~! (taking inverses), the axioms of the Theory of Groups are formed by the following
identities:

ply2)= (o)

1:@:(571.55

T-x
expressing the associativity of the multiplication and the facts that e is its unit element
and that x~! is the inverse element of x. Then groups are structures (G; €, _1)
satisfying the just stated axioms.

A group is called commutative or abelian if it satisfies the commutative law x -y =
y - x. Group Theory is sometimes, especially in the abelian case, formulated in the
language using the binary operation symbol + (addition), the constant symbol 0
(zero) and the unary operation symbol — (minus, the inverse element —z is called the
opposite element to x).

(b) Omitting the unary operation symbol ~! from the language of Group Theory,
the last axiom, expressing the existence of inverse elements, has to be formulated in
a slightly more complicated way

Vo) Fy)(z-y=e=y- )

Then groups are considered as structures (G} -, e) satisfying the corresponding three
axioms.
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(¢) In the language containing just the symbol of multiplication, the axioms ex-
pressing the existence of the unit element and of the inverse elements are merged into
a single more complex axiom

Fu)(Va)(z-u=z=u-zA@FyY)(z - y=u=y- 1))
Another possibility is represented by the axiom

(Vo) @YV 2)(z- (@ y)=2=(y 2)2)

Then a group is a structure (G; ) satisfying the associative law and one (hence both)
of the last two axioms.

It is clear that a group (G; - €, _1) in the sense of (a) can be made a group in the
sense of (b) or (¢) by omitting the interpretations of the superfluous symbols. The
other way round, for Group Theory in the sense of (c¢) one can extend its language by
the missing symbols and define the unit element and the inverse element operation
by

u=e & Va)(z-u=z=u-x)
y:x_l S rry=e=y-x

respectively. Then a group (G; -) in the sense of (¢) becomes a group in the sense of
(b) or (a).

Some examples of commutative groups (in the language with a single binary opera-
tion) are the additive groups (Z; +) of integers, (Z,; +) of remainders modulo n > 2,
of rationals (Q; +), etc. Some examples of noncommutative groups are provided by
the structures (S(X); o) of all bijective maps (permutations) of any set X with more
than two elements into itself and the operation of composition, or by the structures
(GL(n,R); -) of all invertible real n x n matrices, for n > 2, with the operation of
matrix multiplication.

4.3.2 Rings and Fields. (a) The Theory of Rings or Ring Theory is formulated
in the language with two binary operation symbols + (addition), - (multiplication)
and a constant symbol 0 (zero). Then a ring is a structure (A; +, -, 0) satisfying the
axioms of Ring Theory. The axioms express that (A; +,0) is an abelian group, the
associative law for multiplication and two distributive laws

z-(y+z)=(-y +-2) (e+y)-2=(@-2)+ - 2)

usually written simply as (y + z) = xy + xz and (x +y)z = zz + yz. Models of Ring
Theory are called rings.

A ring is called commutative if it satisfies the commutative law for multiplication
x-y=1y-x. A commutative ring is called an integral domain if satisfies the axiom

2y=0 = (zr=0Vy=0)

(b) The Theory of Rings with Unit or the Theory of Unitary Rings is formulated in
the language obtained by extending the language of Ring Theory by a new constant
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symbol 1, denoting the unit of multiplication and adding the identities x-1 =z =1z
to the axioms of Ring Theory.

(¢) The Theory of Fields is obtained from the Theory of Commutative Rings with
Unit by adding to it the axiom 0 # 1 and the axiom

(Vz)(z #0 = Fy)(z-y=1))

requiring the existence of multiplicative inverses for all nonzero elements. A field is
simply a model of the Theory of Fields.

(d) The Theory of Division Rings is obtained from the Theory of Unitary Rings
by extending it by the condition 0 # 1 and the axiom of inverses

Vz)(z#0 = Fy)(z-y=1=y-x))

A division ring is simply a model of this theory.

Even integers form a commutative ring (2Z; +,-,0) without unit. The integers
(Z; +,-,0,1) and the remainders (Z,; +,,0,1) modulo n > 2 form commutative rings
with unit. Examples of noncommutative rings with unit are provided by the structures
(R”X"; +, ~,O,I) of all real n x n matrices, for n > 2, with operations of addition
and multiplication of matrices, the zero matrix 0 and the unit matrix /. Examples of
fields are the structures (Q; +,-,0,1), (R;+,-,0,1), (C; +,-,0,1) of rational, real and
complex numbers, respectively, as well as the structures (Z,; +,-,0, 1) of remainders
modulo any prime number p. Clearly, every field is an integral domain; however, the
integers (Z; +,-,0,1) form an integral domain which is not a field. An example of a
non commutative division ring, i.e., a division ring which is not a field, is provided
by the quaternions (H; +,-,0,1). Quaternions represent a four dimensional version
of complex numbers, i.e., they are numbers of the form qg + q11+q1j+gsk, where
00,q1,42,g3 € R and i, j, k are three imaginary units, satisfying iZ = j> = k* =
ijk = —1. The equality and addition of quaternions are defined componentwise,
while their multiplication is defined in the only possible way extending the above
relations between the generators i, j, k enforced by the axioms of unitary rings.

(e) A field (F; +,-,0,1) is called algebraically closed if it satisfies the infinite list of

axioms
(Vuq,... ,un)(ﬂx)(x" g b, T, = 0)

postulating the existence of roots of all polynomials of any degree n > 2 with
coefficients from F. The field (C; 4,-,0,1) of all complex numbers and the field
(A; +,-,0,1) of all algebraic numbers (i.e., the roots of polynomials with rational
coefficients) are examples of algebraically closed fields.

(f) A field (F; +,-,0,1) is called formally real if it satisfies the infinite list of axioms
x%+~-~+xi=0 = 21=...=2, =0

for every positive n € N, requiring that a sum of squares of nonzero elements is
never 0. The Theory of Real Closed Fields is the extension of the Theory of Formally
Real Fields by the axiom

(Vo)3By)(y* =z vV y° = —x)
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postulating the existence of the square root of either x or —z for any x, as well as the
infinite list of axioms

(Vur,...,un)(3z) (2" +wz™ '+ 4 up12 + uy, = 0)

guaranteeing the existence of at least one root for every polynomial of any odd degree
n > 3 with coefficients from F. The field (R; +,-,0,1) of all real numbers and the
field (RN A; +,-,0,1) of all real algebraic numbers are examples of real closed fields.
The field (Q; +,-,0,1) of all rational numbers is formally real but not real closed.

The following, though rather familiar example is worthwhile to notice since it
shows that the sets of functional or relational symbols of a first-order language may
themselves carry their own first-order structure.

4.3.3 Vector spaces over a field. For a fixed field (F; +,-,0,1) we introduce the
first-order language L(F') which has no relational symbols, a single constant symbol
0, a binary operation symbol + and the set F' of unary operation symbols. A typical
structure of the language L(F) is denoted as V = (V; F,+,0); the elements of the
set V' are called vectors. The elements f € F in role of unary operation symbols
are referred to as scalars; instead of f(x) we usually write just fx and this result is
referred as the scalar multiple of x by f. Vector spaces over the field F' are structures
V = (V; F,+,0) of the language L(F) satisfying the axioms expressing that (V;+,0)
is an abelian group, as well as the axioms

lx =2z
flx+y)=fz+ fy
(fg)z = f(gz)
(f+9)z=fr+gx

for any scalars f,g € F. The reader should realize that the last three equalities are
in fact axiom schemes and not single axioms.

4.3.4 Theories of Order. The Theory of Partial Order is formulated alternatively
in the first-order language with a single binary relational symbol < (strict partial
order) or < (non-strict partial order). The strict version is given by the axioms

—(z < x) “(z<yANy<z) (t<yANy<z)=>zx<z
The non-strict (and more frequently used) version has the axioms
<z (z<yANy<z)=>z=y (t<yANy<z) =>zx<z

A partially ordered set (poset) is simply a model (P; <) or (P; <) of the corresponding
version of the theory.
Obviously, a poset (P; <) can be converted into a poset (P; <) defining the non-
strict partial order by
r<ly&sSz<yVae=y
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Vice versa, a poset (P; <) can be made to a poset (P; <) defining the strict partial
order by
r<yerz<yANzFy

The reader should be able to switch between the two versions anytime.
The Theory of Ordered Sets, sometimes called also the Theory of Linear Order, or
the Theory of Total Orderis obtained by adding the trichotomy aziom

r<yVze=yVy<cx

or the dichotomy axiom
r<yVy<czw

respectively, to the corresponding version of the Theory of Partial Order.

4.3.5 Boolean Algebras. The language of the Theory Boolean Algebras has two
binary operation symbols A (meet), V (join), one unary operation symbol ' (com-
plement) and two constant symbols 0 and 1. This notation violates the implicit
convention that the specific symbols of any first-order language should be clearly
distinguished from its logical symbols. However, since all the axioms of the Theory
of Boolean Algebras are identities and do not contain any logical connectives, there
is no danger of confusion. On the other hand, this notation points to the familiar
connection between Boolean algebras and Propositional Calculus. A Boolean algebra
B=(B; A,V,’,0,1) is simply a model of the theory with the following axioms:

TANYy=yAzx zVy=yVzx (commutative laws)
xAYyANz)=(xAy)Az xV(yVvVz)=(xVy)Vz (associative laws)

AT == rVr=c (idempotent laws)
zA(zVy) == zV(zhy) ==z (absorbtion laws)
xA(yVz)=(@xAy)V(@eAz) 2V (yAz)=(xVy)A(xVz) (distributive laws)

(xny) =2"Vvy (xVy) =2"Ny (De Morgan laws)

xA0=0 zVvV0==z (laws of 0)

rANl=zx zv1l=1 (laws of 1)

zAz' =0 zVva =1 (laws of complement)

This axiom list is redundant: some of its items can be derived as consequences of the
remaining ones. A partial order on every Boolean algebra can be introduced via any
of the following two equivalent conditions:

sy rc=cN Ny cVy=y

Then 0 and 1 become the smallest and the biggest element, respectively, with respect
to this partial order in B.

The typical examples of Boolean algebras are formed by the power sets of any
sets. More precisely, for every set I its power set P(I) = {X: X C I} with the
operations of set-theoretical intersection, union and complement with respect to the
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set I, the empty set () as 0 and the whole set I as 1, gives rise to the Boolean
algebra (P(I); N,U,’,0,T). The partial order X < Y on P(I) coincides with the
set-theoretical inclusion X C Y.

Another example of a Boolean algebra can be obtained from the set VF(P) of all
propositional forms over any set of propositional variables P # () interpreting the
equality relation as the relation of logical equivalence A = B, with logical connectives
A, V and — in the role of the Boolean operations of meet, join and complement,
respectively, and with any tautology in the role of 1 and any contradiction in the role
of 0.

4.3.6 Exercise. (a) Show that both the conditions defining the relation of partial
order < on Boolean algebras are indeed equivalent, and that < defined that way is
indeed a (non-strict) partial order.

(b) Show that the meet x A y is the infimum and the join x V y is the supremum
of the set {z,y} with respect to the partial order <, respectively. This is to say that
for any z we have z < z and z < y if and only if z < z Ay, and, similarly, x < z and
y<zifand only if x Vy < z.

(¢c) Prove the law of double complement z" = z, as well as the identities 0/ = 1,
1" =0 from the axioms of Boolean algebras.

4.3.7 Ordered Rings and Fields. The Theory of Ordered Rings is obtained by
extending the language of Ring Theory by the binary relational symbol < and adding
to its axioms the strict version of the axioms of (total) order, as well as the axioms

r<y=x+z<ytz
(x<yAN0<z2)= (zz<yz A zz < zy)

expressing that the operations of the addition of any element z as well as the multi-
plication by any positive element z are increasing.

The same procedure applies to the Theory of Unitary Rings, the Theory of Commu-
tative Rings, the Theory of Fields, etc., yielding the Theory Ordered Unitary Rings,
the Theory of Ordered Commutative Rings, the Theory of Ordered Fields, etc., respec-
tively. The integers (Z; +,-,0, 1, <) provide a representative (and minimal) example
of an ordered commutative ring with unit. The rationals (Q; +,-,0,1,<) and the
reals (R; +,-,0,1, <) form ordered fields. It can be proved that neither the field of
complex numbers (C; +,-,0,1) nor any finite field, e.g., the fields (Z,; +,-,0,1) of
remainders modulo a prime p, can be turned into an ordered field by any ordering
relation <.

An ordered field (F; +,-,0,1,<) is called real closed if it is a formally real field
satisfying the condition

>0 = (32)(z =27

and the infinite list of conditions stating that every polynomial of odd degree n > 3
with coefficients from F has at least one root in F, similarly as in the case of (un-
ordered) real closed fields. The Theory of Ordered Real Closed Fields is obtained
as the extension of the Theory of Ordered Fields by these axioms. It can be easily
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verified that every real closed field (F; +,-,0,1) can be turned into an ordered field
(F; +,-,0,1,<) by defining the (non-strict) order relation on it as follows:

<y & 3z)(y=z+2%)

The other way round, for every ordered real closed field (F; +,-,0, 1, <), its reduct
(F; +,-,0,1), obtained by omitting the order relation <, is a real closed field.

4.3.8 Peano Arithmetic. Peano Arithmetic PA is the most common first-order
theory describing the structure of natural numbers. In logical texts it is usually
formulated in the first-order language with a unary operation symbol S (successor
operation, i.e., adding 1), two binary operations of addition + and multiplication -,
and a constant symbol 0. However, we find it more convenient to replace the succes-
sor symbol S by the constant symbol 1; that way our formulation of PA will use the
familiar language of the Theory of Unitary Rings (then the successor operation can
be defined by S(x) =z + 1).

The axioms of PA can be divided into four groups. The first group consists of three
axioms for the successor operation (the left column), the second group is in fact the
recursive definition of addition in terms of successor (the middle column), and the
third group is the recursive definition of multiplication in terms of addition (the right
column):

0+1=1 r+0=zx 2-0=0
0#z+1 z+y+)=(@+y)+1 z-(y+1)=(z -y +a
r+l=y+1=z=y

The fourth group consists of infinitely many axioms comprised in the Scheme of
Induction

(0, @) A (Vo) (p(@, @) = ¢(z+1,7)) = (Ya)p(w,0)

where ¢(x,u1, ..., uy,) is any formula in the language of PA, abbreviated to p(z, @).
The language of PA is usually extended by the ordering symbol < defined by

r<y e @2)y=c+2)

and the axioms of PA imply that this is a (non-strict) linear order with the least
element 0. Then the Scheme of Induction can be equivalently expressed in form of
the Well Ordering Principle

Fo)y(@,a) = (F)(W(@,0) A Yy, 7) = v <y))

for any formula ¢ (z, @) in the language of PA. Informally, this principle expresses the
condition that every nonempty set of the form {z: ¢(z, @)} has the least element.

The “usual” natural numbers form the so called standard model (N; +,-,0,1) of PA.
Every element n € N is the interpretation of some constant term in the language of PA.
The canonical representatives of particular natural numbers are defined recursively
as follows:
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1° The natural number 0 coincides with the constant symbol 0.
2° If the natural number n coincides with the constant term ¢, then the natural
number n + 1 coincides with the constant term ¢ + 1.
By abuse of notation we can write 0 = 0,1 =0+1, 2 = (0+1)+1,3 = ((0+1)+1)+1,
oo, =0..((04+1)+1)---+1)+ 1 (with n instances of 1), etc. Thus the natural
number n is represented by the constant term obtained as the n*" iterate of the
successor operation applied to the constant symbol 0.
Later on we shall see that PA has some nonstandard models, as well.

4.3.9 Set Theory. Most versions of Set Theory are formulated in the first-order
language with a single binary relational symbol € denoting the membership relation.
The formula x € X means that x is an element (a member) of X or that = belongs to
the set X. The common core of these versions consists of the following four axioms:

X=Y & (V2)(zeX & z€Y)
(V2)

Ve, y)3Z2)V2)(z€Z & (z=a V z2=1y))
VX)AU)Vu)(uelU < (Jz e X)(u € x))
VX)AY)Vy)lyeY & (Va)(z ey = z € X))

called the Aziom of Extensionality, the Axiom of Pair, the Axziom of Union and the
Power Set Azxiom, respectively, and of the following infinite list of axioms

(VX)(EIY)(Vx)(a: eY & (zeX A w(x,ﬁ)))

for any set-theoretical formula ¢(x, u1, ..., uy), called the Scheme of Comprehension.
The Axiom of Extensionality states that two sets X and Y are equal if and only
if they contain the same elements. The Axiom of Pair postulates the existence of the
set
Z=Az,y}={z:z2=2V z=y}

for any pair of elements x, y. The Axiom of Union guarantees the existence of the
union

U=JX ={u: GreX)(ueux)
of all the sets x from a given set X. The Power Set Axiom postulates the existence
of the power set (i.e., the set of all subsets)

Y =P(X)={y:y S X} = {y: (Va)w ey = = € X)}

of any set X. Finally, the Scheme of Comprehension guarantees the possibility to
single out every subset of the form

Y={zeX:pz,a)={z:2eX A ¢4}

from a given set X by means of any set-theoretical formula p(z,uq,. .., uy,).

The Zermelo-Fraenkel Set Theory ZF is obtained by adding to this list the Aziom
of Foundation, the Axziom of Infinity and the Scheme of Replacement. The Zermelo-
-Fraenkel Set Theory with Choice ZFC, which is the most common version of Set
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Theory used in modern mathematics, is obtained from ZF by adding to it the Axiom
of Choice (AC). We do not include the formulation of these higher axioms of Set
Theory into our elementary text. Let us just confine to the following four informal
formulations. The Axiom of Foundation states that every set of sets contains as an
element a set disjoint from this set. The Axiom of Infinity postulates the existence
of an infinite set and, as a consequence, it makes possible to prove the existence of
the set of all natural numbers. The Scheme of Replacement generalizes the Scheme of
Comprehension by enabling to form sets not just by singling them out from a given
set but also as images of subsets of a given set defined by set-theoretical formulas.
Finally, the Axiom of Choice guarantees, for every set X of pairwise disjoint nonempty
sets, the existence of a set containing exactly one element from each of the sets z € X.

4.4 Axiomatization of First-Order Logic and
the Soundness Theorem

Similarly as in Propositional Calculus, we prefer to have a brief and concise axioma-
tization of First-Order Logic. Therefore we will proceed as if the set Form(L) of all
formulas of any first-order language L were built of the atomic formulas by means
of the logical connectives = and =, and the universal quantifier V, only. By ¢ ~ 1
we express that the characters ¢ and i denote the same formula. Again, the symbol
~ does not belong to our first-order language, similarly as the symbols ¢, ¥, x, L,
etc. They are symbols of our metalanguage by means of which we describe Predicate
Calculus.

The remaining logical connectives and the existential quantifier can be introduced
as the abbreviations

(e AY) = =(p = ),
(V) = (ne = ¥),
(pev)=(@=9) AW =),
Fz)e ~ (V)=
Logical axioms of Predicate Calculus are divided into three groups: propositional
axioms, quantifier axioms and axioms of equality.

4.4.1 Propositional axioms. (4 axiom schemes)
For any formulas ¢, ¥, x the following formulas are axioms:

(PrAx1l) ¢ = (Y= )

(PrAx2) (p= (W =x) = (¢=¢)= (¢ = X))
(PrAx3) (¢ =) = ((¢ = ) = ~p)

(PrAx4) ——p =

If ¢ is a formula and ¢ is a term, then (t/x) denotes the formula obtained by the
substitution of the term t for the variable x in the formula ¢. It means that every
free occurrence of the variable x in ¢ is replaced by ¢. Similarly we can introduce
multiple substitutions ¢(t1/x1,...,t,/xy,). If there’s no danger of confusion then we
write just ¢(t) and o(t1,...,tn).
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The substitution of t for x in ¢ is admissible if no variable of the term ¢ falls under
the range of some quantifier in ¢ after substituting ¢ for x in . Informally this means
that “p(t/x) is telling of ¢ the same thing as ¢ is telling of x”.

4.4.2 Example. Within the integers the formula p(z) ~ (Jy)(z = y+y) tells that x
is an even number. If ¢ is the term u—+x then ¢(¢/x) is the formula (3y)(u+z = y+y),
telling that u + = is even; this is an admissible substitution. If ¢ is the term y then
p(t/x) is the sentence (Fy)(y = y + y) expressing the (true) fact that the equation
y = y + y has some solution; this substitution is not admissible.

4.4.3 Quantifier axioms. (2 axiom schemes)
For any formulas ¢, ¥ and any term t the following formulas are axioms:

(QAx1) (Va)(p = ) = (¢ = (Va)P)

(whenever the variable x has no free occurrence in )
(QAx2) (Va)p = p(t/x)

(whenever the substitution of ¢ for x in ¢ is admissible)

4.4.4 Axioms of equality. (3 axioms + 2 axiom schemes)

For any n-ary functional symbol f and any n-ary relational symbol r the following
formulas are axioms:

( ) =z

( ) r=y=y=zx

(EAx3) z=y=>(y=2=>x=2)

( ) == (.= (@ =yn= flor,. ., Zn) = f(Y1,- - YUn)) - --)

( ) == (.= (@ =y =@, Zn) = 7(Y1, - Yn)) )

4.4.5 Deduction rules: Mopus PONENS (MP) and
RULE OF GENERALIZATION (Gen)

(MP) %j (from ¢ and ¢ = @ infer ¢)
(Gen) (Vi)go (from ¢ infer (Vz)p)

4.4.6 Exercise. (a) Show that all the logical axioms are satisfied in every L-struc-
ture A.

(b) Show that the deduction rule Modus Ponens is correct in the following sense:
For every L-structure A and any L-formulas ¢, ¢, if AE ¢ and A E ¢ = 9 then
AE .

(¢) Show that the Rule of Generalization is correct in the following sense: For every
L-structure A and any L-formula ¢, if AFE ¢ then AF (Vz)p for any variable x, no
matter whether z is free in ¢ or not.
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A proofin a first-order theory T is a finite sequence ¢, 1, - - . , 5 of formulas such
that each item @y is either a logical axiom or a specific axiom of the theory T (i.e.,
v € T), or it follows from the previous items by Modus Ponens (MP) (i.e., there are
i,j < k such that ¢; has the form ¢; = ) or by the Rule of generalization (Gen)
(i.e., there is a j < k such that ¢, has the form (Vx)g; for some variable z).

A formula v is provable in a theory T if there is a proof ¢g,¢1,...,¢, in T such
that its last item ¢,, coincides with 1. In symbols, T F v. Instead of @ - 1) we write
just F ); it means that 1) is provable from the logical axioms, only.

4.4.7 Exercise. Show that the following first-order schemes are provable just from
the logical axioms:

(a) all propositional tautologies

(b) @(t/xz) = (Fx)e (if the substitution t/z in ¢ is admissible)

() (mr=yi Ao A&y =9yn) = t(z1,...,20) =t(y1,...,yn) (for any term t)

(

d) @i=yA...Azp=yn) = (p(T1,...,20) < W1y, Yn))
(for any formula ¢ such that all the substitutions y;/z; in ¢ are admissible)

4.4.8 Soundness Theorem. Let T be a theory in a first-order language L. Then,
for every L-formula 1, if T 1 then T E 1.

Demonstration. Let T 4 and ¢q, ¢1,...,9, be a proof of ¥ in T. We will show
that A F ¢y, for any model A E T of the theory T and each k < n. Then, of course,
A E 4, since ¢ is ¢,,. Each @y, is either a logical axiom, in which case A F ¢}, for every
L-structure A, or a specific axiom of T', in which case A F ¢ as AE T, or ¢y, follows
from some previous proof items by (MP) or by (Gen). In the (MP) case there are
4,7 < k such that ¢; has the form ¢; = ¢;. Now, for any L-structure A, assuming
that we already have A F ¢; and AF ¢;, i.e., AFE ¢; = ¢, we can conclude A F ¢y,.
In the (Gen) case there is a j < k such that ¢ has the form (Vx)g;. Again, for any
L-structure A, assuming that we already have A F ¢;, we can conclude A E (Vx)p;,
ie., AFE ¢r. (Cf. Exercise 4.4.6.)

At this moment, the reader should return to Remark 3.6.2 following the demon-
stration of the Soundness Theorem 3.6.1 in Propositional Calculus and realize that
the accounts stated there equally apply to its first-order version.

Later on we will also establish the converse of the Soundness Theorem.

4.4.9 Completeness Theorem. Let T be a theory in a first-order language L.
Then, for every L-formula 1, if T E 1 then T + .

As it follows from the following example, the fine balance between the syntax and
semantics which we have both in the Propositional as well as in the First-Order Logic
is no way self-evident or automatic.

4.4.10 Example. (Finite Model Semantics) Let L be a first-order language. For any
theory T in L and any L-formula ¢ we define the finite satisfaction relation T Egy ¢
if and only if A F ¢ for every finite model A of the theory T, i.e., if and only if ¢ is
satisfied in every finite model of the theory T. By methods going beyond the scope
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of our elementary course it can be shown that this Finite Model Semantics cannot
be axiomatized in a way enabling to establish both the corresponding versions of
the Soundness Theorem and of the Completeness Theorem. More precisely, for any
sound axiomatization, consisting of finitely many axiom schemes and finitely many
rules of inference, the resulting provability relation T Fg, ¢ does not exhaust the
finite satisfaction relation T Fgy, . This is to say that it is possible to find a theory
T and a sentence ¢ such that T Eg, ¢, nevertheless T gy, .

To convey to the reader at least some feeling of the issue, let us mention the
deep Wedderburn’s Theorem, stating that every finite division ring is a field. In other
words, the commutative law xy = yx is finitely satisfied in the theory of division rings.
On the other hand, the infinite division ring of all quaternions (H; +,-,0,1) is non
commutative; therefore, the commutative law for multiplication is not a first-order
consequence of the axioms for division rings.

4.4.11 Exercise. We say that an L-formula ¢ is logically valid if it is satisfied in
every L-structure A. Two L-formulas ¢, 1 are called logically equivalent, notation
@ = 1, if the formula ¢ < 1 is logically valid. A formula ¢ is said to be in prenex
normal form if it has the shape (Qq z1)...(Q,, ) where Qq, ..., Q,, are arbitrary
quantifiers and 1 is a quantifier-free formula.

(a) Show that, for any formulas ¢, 1, the following pairs of formulas are logically
equivalent:

(V) = (Fz)-ep —(Fz)p = (V)¢
(Vx)p Ay = (Vo) (e Ay) (Fz)p vy = (3z)(p V)
Vo) =1 = 3x)(p =) Y= Fz)p = Fz)[¥ = ¢)

(b) Show that, for any formulas ¢, 1 such that the variable x has no free occurrence
in v, the following pairs of formulas are logically equivalent:

(Vo)pvy = (V) (e V) o)Ay = Br)eAY)
Br)p =19 = (Vz)(p = ¢) v = (Va)p = (Vo) = ¢)

(c) Using (a) and (b) show that every L-formula is logically equivalent to some
formula in prenex normal form.

(d) Replace in any case in (a) and (b) the logical equivalence § = x by the formula
0 < x and show that all the formulas thus obtained are provable from the logical
axioms (in fact just from the propositional axioms and the quantifier axioms). In
each case in (b) decide which of the implications § = x, x = 6 remain logically valid
even without the assumption that x has no free occurrence in ¥, and give examples
showing that in the remaining cases this assumption cannot be omitted.

4.5 The Deduction Theorem and its Corollaries

On the way to the demonstration of the Completeness Theorem we are going to
state several results which are of independent interest in their own right. The first
group consists of the Deduction Theorem and its two corollaries, namely the Corollary
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on Proof by Contradiction and the Corollary on Proof by Distinct Cases, which are
analogous to their propositional counterparts.

4.5.1 Deduction Theorem. Let T be a theory in a first-order language L and ¢,
¢ be any L-formulas. If ¢ is closed then T+ ¢ = 1 if and only if T U {p} F 4.

The easy fact that from T F ¢ = 1 there follows T'U {¢} F 1 can be established
in exactly the same way as in the demonstration of the Deduction Theorem 3.7.1
in Propositional Calculus, even without the assumption that ¢ is closed. It is the
converse which is needed for the justification of the usual way of argumentation when
instead of proving the implication ¢ = % in T we prove ¢ in T'U {¢}. This can be
established in a similar, just a little bit more complicated way, as the demonstration
of the corresponding statement in Propositional Calculus, again. One just has to deal
additionally with the case when 9 follows from some preceding item of its proof in
TU{p} by the Rule of Generalization (Gen). Let us fill in this gap, leaving the details
to the reader.

Demonstration. Assume that g, 91, ..., 1, is a proof of the formula v in the theory

T U {p} and ¥, follows from some previous formula 1, where 0 < k < n, by (Gen).

Then 1y, is provable in T'U {¢} and, by an induction argument, we can assume that

the implication ¢ = 1 is provable in 7. Thus ¢ has the form (Vz)yy for some

variable . Now the following formulas are provable in T":

(1) o=

(2) (Va)(¢ = ) follows from (1) by (Gen)

() (Va)(¢ = ¥r) = (¢ = (Va)yy) is an instance of the quantifier axiom scheme
(QAx 1), as ¢ is closed so that = has no free occurrence in it

(4) (¢ = (Ya)ihg) can be inferred from (2) and (3) by (MP)

Thus, finally, T+ ¢ = 1.

Next we show that, in general, one cannot do without the assumption that ¢ is
closed.

4.5.2 Example. Let L be the language of pure equality, i.e., the first-order language
without any specific symbols (F = C = R = () and T = ) be the theory without any
specific axioms in L. Denote by ¢ the formula z = y and by v the formula x = z. We
claim that T'U {¢} F 4, nevertheless, T t/ ¢ = ¢. T U {¢} = {¢} is the theory with
a single axiom =z = y. It means that all the models of this theory have just a one-
-element base set. Applying (Gen) to this axiom, we see that T U {¢} F (Vy)(z = y).
Now, we have the quantifier axiom (Vy)(z = y) = x = z, and using (MP) we infer
that TU{p} F 2 = z. At the same time, the implication ¢ = ¢, ie, z =y = z =2
is not provable just from logical axioms, i.e., in the theory T. Namely, if this were
the case, then it would be satisfied in every L-structure A. However, every A with
at least a two-element base set with elements a # b violates this implication, since
substituting a for both z and y and b for z we have a = a, nevertheless a # b.

A theory T in a first-order language L is called inconsistent or contradictory if
there is some closed L-formula ¢ such that T+ ¢ as well as T+ —¢. Otherwise, T is
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called consistent or contradiction-free. It can be easily verified that T is inconsistent
if and only if every L-formula is provable in T

The following results follow from the Deduction Theorem 4.5.1 in the same way as
in Propositional Calculus.

4.5.3 Corollary on Proof by Contradiction. Let T be a theory in a first-order
language L and ¢ be a closed L-formula. Then T & ¢ if and only if the theory
T U {—p} is contradictory (inconsistent).

4.5.4 Corollary on Proof by Distinct Cases. Let T' be a theory in a first-order
language L and @, 1 be any L-formulas. If ¢ is closed then T \ 1 if and only if

TU{p} 1 and TU{—¢} F .

4.5.5 Exercise. Find examples showing that the assumption that ¢ is closed cannot
be omitted from the above Corollaries.

4.6 Complete Theories

Another important property of first-order theories closely related to consistency is
that of their completeness. A theory T in a first-order language L is called complete
if it is consistent and for any closed L-formula ¢ we have T F ¢ or T —p. In other
words, T is complete if and only if, for every L-sentence ¢, either T'F ¢ or T F —¢p
(but not both). We also use to say that T can decide every sentence (.

4.6.1 Example. The reader may wonder why in the definition of complete theories
we have required that T can decide just the closed formulas, ignoring the remaining
ones. For the sake of explanation, consider the formula x = y and its negation = # y.
If the provability of one of them were included in the requirement of completeness
of a theory T then, in the first case, T' would have just one-element models, or, in
the second case, it would be contradictory. As a consequence, any consistent theory
“complete” in such a sense would have trivial models, only.

Using the Corollary 4.5.3 on Proof by Contradiction, complete theories can be
characterized as maximal consistent theories in the following sense:

4.6.2 Corollary on Complete Theories. Let T be a consistent theory in a first-
-order language L. Then T is complete if and only if, for every L-sentence y, either
T + ¢ or the theory T U {¢} is contradictory.

In other words, extending the axiom list of a complete theory T" by any sentence ¢
makes no sense: either ¢ is already provable in T (in which case the sets of formulas
provable in T" and T'U {¢} coincide) or T'U {¢} turns inconsistent hence worthless.

Most of the relevant first-order theories occurring in mathematics are not com-
plete. On the other hand, many of them have important complete extensions. In
this place we just mention some examples of complete theories without proving their
completeness.
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4.6.3 Divisible Abelian Groups. The Theory of Groups is not complete: for in-
stance, the fact that there exist both abelian as well as nonabelian groups shows that
neither the commutativity law (Vz,y)(zy = yx) nor its negation can be proved in it.
Here we describe some relatively simple complete extensions of the Theory of Abelian
Groups.

An abelian group G = (G; +,0) is called nontrivial if (3z)(x # 0) holds in G; it is
called divisible if it is nontrivial and satisfies the condition

(V2)(3y)(n xy = x)

for every integer n > 2, where n X £ = z + ... + x with n-fold occurrence of z. G is
called torsion-free if it satisfies all the conditions

nxr=0= x=0

for n > 2. Given a fixed n > 1, we say that G is a group of exponent n if it satisfies
(Vz)(n x x = 0). It is known that the Theory of Divisible Torsion-Free Abelian
Groups, as well as every Theory of Divisible Abelian Groups of Exponent p, for a fixed
prime number p, is complete.

4.6.4 Real Closed and Algebraically Closed Fields. It can be shown that the
Theory of Real Closed Fields (both in its unordered as well as in its ordered version)
is complete. On the other hand, the Theory of Algebraically Closed Fields is not
complete. Nonetheless, its complete extensions can be fully described.

The characteristic of a unitary ring A = (A; +,-,0, 1) is the least integer char(A) =
n > 1 such that n x 1 = 0, or char(A) = oo if n x 1 # 0 for each n > 1 (some authors
put char(A) = 0 in this case). It is known that the characteristic of any field is
either a prime or co. A field (F, +,-,0,1) has the prime characteristic p if and only
if it satisfies p x 1 = 0, it has the characteristic oo if and only if it satisfies all the
conditions p x 1 # 0 for every prime number p. Every Theory of Algebraically Closed
Fields of a fixed prime Characteristic p, as well as the Theory of Algebraically Closed
Fields of Characteristic oo is complete.

4.6.5 Dense Linear Order. A linearly ordered set (A; <) is called dense if it con-
tains at least two elements and satisfies the condition

Va,y)(z <y = 32)(z<z<y))
(A; <) is without endpoints if it satisfies the condition
(Va)3y, 2)(y <z < 2)

The Theory of Dense Linear Order without Endpoints can be proved to be complete.
Additionally, three complete extensions of the Theory of Dense Linear Order can
obtained by the variation of the condition of the existence of endpoints in the obvious
way.
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4.6.6 Atomic and Atomless Boolean Algebras. An element a € B of a Boolean
algebra B = (B; A,V,’,0,1) is called an atom if a # 0 and there is no element b € B
such that 0 < b < a. Formally, we can extend the language of Boolean algebras by a
new unary predicate At(z) defined by

At(z) © 240N (Vy)(0<y<z = (y=0Vy=u)

using the previously defined partial order < (see 4.3.5). Then B is called atomic if
for every nonzero element of B there is an atom contained in it, i.e., if B satisfies the
condition

(Va)(z#0 = (Fy)(At(y) Ay <))
B is called atomless if it has at least two elements and contains no atom. This can
be expressed by the non-triviality condition 0 # 1 and a kind of density axiom

(Vo) #0 = (Fy)(0 <y <))

The Theory of Atomic Boolean Algebras with Infinitely Many Atoms as well as every
Theory of Atomic Boolean Algebras with Precisely n Atoms, for any n > 0, are com-
plete. Similarly, the Theory of Atomless Boolean Algebras is complete, too. Moreover,
all the complete extensions of the Theory of Boolean Algebras can be effectively de-
scribed in terms of a pair of integer invariants. However, this description is fairly
involved and goes beyond the scope of our exposition.

4.6.7 Presburger Arithmetic. Later on, when dealing with Godel’s Incomplete-
ness Theorems, we shall see that not only Peano Arithmetic is not complete but also
its completions cannot be effectively described. On the other hand, it has an inter-
esting complete subtheory called Presburger Arithmetic, describing the structure of
natural numbers with the operations of successor and addition, only. Its language
contains the constant symbols 0 and 1 and the operation symbol +. Its axioms are
obtained from the axioms of Peano Arithmetic quoted in 4.3.8 by omitting those con-
taining the symbol of multiplication, i.e., the couple forming the right most column
of the seven individual axioms of PA as well as all the instances of the Scheme of
Induction where the formula ¢(x, @) contains the operation symbol - .

4.7 Results on Language Extensions

When proving a universally quantified statement of the form (Vz1, ..., xg)¢(21, ..., 2%)
in a first-order theory T', we usually begin with the phrase: “Let =1, ..., x, be ar-
bitrary elements...” That, however, means that we do not consider zi, ..., =, in
our proof as variables any more, and deal with them as with some unspecified con-
stants. The following result shows that such a kind of argumentation is legitimate in
First-Order Logic.

4.7.1 Lemma on Constants. Let T be a theory in a first-order language L,
o(x1,...,2,) be an L-formula and c1,..., ¢, be pairwise distinct constant symbols
not occurring in L. Then

TrFe(er,...,cp) ifandonly if TkF Nay,...,zr)e(x1,...,Tk)
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Demonstration. Assume that T+ ¢(cq,...,c). Realize that T is a theory in the
language L not containing the constants ci,. .., cg, so that the theory T “cannot know
anything about them”. Therefore, everything what can be proved in T about these
constants can be proved about conveniently chosen distinct variables x1, ...,z not
occurring in the original proof —it suffices to replace each occurrence of the symbol
symbol ¢; by the variable x;. Then T F ¢(x1,...,2;) and the needed conclusion
follows by the Rule of Generalization. The reversed implication is trivial.

It is clear that the above theorem remains true also in case when the constants
c1,...,c, belong to L but they do not occur in any of the specific axioms of T.

When developing and building a mathematical theory we seldom keep its language
fixed for all the time. Just the opposite, we often define new notions, corresponding
to some operations, relations or distinguished elements, and introduce new symbols
for them. These new symbols, as a rule, denote important or frequently occurring
concepts, abbreviate otherwise cumbersome formulations and that way contribute to
transparency and intelligibility of the theory. Even in our course we already did so
several times in the parts devoted to examples of various first-order theories, without
paying special attention to this point. For instance, we extended the language of
Group Theory consisting of a single binary operation symbol - by the constant symbol
e for the unit element and the unary operation symbol ~! for taking inverses. We
also extended both the language of the Theory of Boolean Algebras as well as the
language of Peano Arithmetic by the order relation symbol <, etc. Now, we will treat
this situation in general.

Let L = (F,C,R,v) and L' = (F',C", R', V") be two first-order languages. We say
that the language L’ is an extension of the language L if F C F', C CC', RC R’
and for each operational or relational symbol s € FUR we have v/(s) = v(s), i.e., the
arities of the symbol s in L and L’ coincide. Is it the case, we write L C L' or L' D L.
Then any first-order theory T in the language L can be considered as a theory in the
language L'. The other way round, from any L’-structure A = (4; I) one can obtain
an L-structure A| L = (A; I'[L), called the restriction of A to L, by leaving its base
set A and the interpretations s’ of all the symbols of L unchanged and omitting the
interpretations of the remaining symbols of L’. We are particularly interested in the
case when the new symbols extending L are introduced by means of definitions by
formulas of the language L.

The unique ezistence quantification (3'x)e is introduced as the abbreviation for

Bz) (e A (Yy)(ply/z) =y =x))

where y is any variable not occurring in ¢.
Let T be a theory in a first-order language L. Dealing with constant, functional
and relational symbols we distinguish three possibilities:
(a) Let p(z) be an L-formula such that T+ (3! 2)p(x). We extend the language L
by a new constant symbol d not occurring in L and the theory T by the axiom

r=d < p(z)

(b) Let ¢(x1,...,2n,y) be an L-formula such that T = (Vx1,...,2,) 3 y)Y(Z, y).
We extend the language L by a new m-ary functional symbol g not occurring in
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L and the theory T by the axiom
y=g(x1,...,2n) & Y(@1,...,Tn,Y)

(¢) Let p(z1,...,2,) be any L-formula. We extend the language L by a new n-ary
relational symbol ¢ not occurring in L and the theory T by the axiom

q(z1,...,xn) © p(x1,...,2p)

In any of the above cases we say that the constant symbol d or the functional symbol
g or the relational symbol g, respectively, were introduced by the corresponding def-
inition in 7. The reader should realize that, regarding constant symbols as nullary
functional symbols, (a) can be considered as a special case of (b).

We say that a theory 7" in a first-order language L’ is an extension of the theory
T in the first-order language L by definitions if L’ is an extension of L by finitely
many specific symbols and the specific axioms of T” are obtained extending T by
consecutive introduction of the new symbols of L’ by definitions. Thus introducing
a new symbol at some step we can use not just the means of the original language
L in its definition but also the previously introduced symbols. Now it is clear that
every model A = (A; I) of the theory T in the language L has a unique extension to a
model A" = (A; I') of T in the language L’. Tt is obtained by repeated interpretation
of each newly introduced symbol in A’ using its defining formula in the language L
extended by the previously introduced symbols.

Although the new theory T” enables to express several concepts in a more concise
and readable way, concerning statements in the original language L, it cannot prove
more then the original theory T'.

A theory T’ in a first-order language L’ extending a theory T in a first-order
language L C L’ is called a conservative extension of T if for any closed L-formula ¢
we have

T+ ifand only if TF ¢

Obviously, every conservative extension of a consistent theory is itself consistent.

4.7.2 Theorem on Extension by Definitions. Assume that the theory T’ in a
first-order language L' is obtained as an extension by definitions of a theory T in a
first-order language L C L'. Then T’ is a conservative extension of T.

In order to demonstrate Theorem 4.7.2 it would be enough to deal with the case
when L’ and T’ are obtained from L and T by introducing a single defined symbol.
The idea of the proof is simple: it consists in replacing every instance the defined
formula © = d, y = g(x1,...,2,) or g(x1,...,x,), respectively, by an appropriate
instance of the corresponding L-formula defining it. However, its realization would
require to take care of some technical details which we skip as they would hardly
contribute to reader’s understanding the issue.

4.7.3 Exercise. Extensions by defined constants, operations or relation are fairly
frequent in Set Theory.
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(a) Write explicitly the defining formulas for the empty set constant @), the opera-
tions of the unordered pair of elements {x,y}, of the union [J X, as well as for all the
operations of taking the subset {z € X : p(x, %)} from the Scheme of Comprehension.

(b) Using appropriate instances of the Scheme of Comprehension introduce the
binary operations of intersection X NY = {u: u € X Au € Y} and set-theoretical
difference X \Y ={u:ue X Au ¢ Y}

(c) Write the defining formula for the subset relation X C Y and, using it, introduce
the power set operation P(X) ={Y:Y C X}.

(d) Using the operations of unordered pair {z,y} and union |J X, introduce the
binary operation of union X UY ={u:ue X Vu e Y}.

(e) Using the operation of unordered pair, introduce the operation of ordered pair

as (z,y) = {{z}, {z,y}} and prove that
(z,y) = (w,v) © r=uAy=v

(f) Using the operations of ordered pair (z,y), binary union X UY and power set
P(X), as well as an appropriate instance of the Scheme of Comprehension, introduce
and justify the operation of cartesian product

XxY={(z,y):ze X ANyeY}

4.8 Godel’'s Completeness Theorem

Assume that L = (F,C, R,v) is a first-order language containing at least one constant

symbol (i.e., C # ). Denote by K the set of all constant terms of L. Then K

becomes the base set of an L-structure K = (Kj...), obtained by interpreting the

specific symbols of L in the following natural way:

(a) for any m-ary functional symbol f € F and constant terms ty,...,t, € K,
fR(t1,...,t,) is the constant term f(ty,...,t,)€K;

(b) for any constant symbol ¢ € C, ¢* is the constant term ¢ € K;
(¢) for any n-ary relational symbol r € R and constant terms ¢y, ...,¢, € K, we put
(t1,...,tn) € ¥Xif and only if Tk r(t1,...,t,).
Additionally, we introduce the following binary relation ~7 on K:
ti ~p ity & THE =1

for t1,to € K. If there’s no danger of confusion, we write just ~ instead of ~rp.

4.8.1 Exercise. Using the Axioms of Equality show that
t~t
t1 ~ty = tg ~ 11
(ty ~ by Aty ~t3) = t1 ~ t3
(t1 ~s1 A Aty ~Sn) = f(t1, e ytn) ~ f(S1,--.,8n)
(t1~S1TA oAty ~sy) = (Tt tn) ©7(S1,.-+,80))

for any t,tq,ts,t3 € K, all n-ary symbols f € F, r € R and any t1,81,...,tn, S, € K.
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The first three conditions express the fact that ~ is reflexive, symmetric and tran-
sitive, i.e., it is an equivalence relation on the set K. For each t € K we denote
by

t={scK:s~t}

the set of all constant terms equivalent with ¢, i.e., all such s € K for which the
equality s =t can be proved in T'. We always have t € t, t = s if and only if ¢t ~ s,
and t N5 =0 if ¢t % s. Thus we can form the quotient set

K/~={t:te K}

i.e., the partition of K into blocks of pairwise equivalent elements. Alternatively, K/~

can be viewed as the result of identifying or merging into a single element each block

of pairwise equivalent elements of K. In other words, the equivalence relation ~ is
considered as a “new equality” on K. The last two compatibility conditions express the
fact that both the operations and the relations in K respect the equivalence relation,

i.e., the “new equality” ~ .

The quotient M = K/~ becomes the base set of an L-structure M = (M;...),
again, obtained by interpreting the specific symbols of L in the following natural
way:

(a) for any m-ary operation symbol f € F' and equivalence blocks t,...,tn € M,
fM(t1,....t,) is the equivalence block f(t1,...,t,) € M of the constant term
f(tl,...,tn) € I(7

(b) for any constant symbol ¢ € C, ¢™ is the equivalence block ¢ € M of the constant
term ¢ € K;

(¢) for any n-ary relational symbol r € R and equivalence blocks th, ...ty € M, we

put (t~1, e ,tn) € rMif and only if T'F r(ty,...,t,).

The compatibility conditions for ~ guarantee that the above definitions of the inter-
pretations fM, r™M of the operation and predicate symbols, respectively, are correct,
i.e., they do not depend on the particular representatives of the equivalence blocks ;.
Obviously, the interpretation of any constant term ¢ € K in the structure M is the
element ¢t € M, i.e., tM =1t

In order to stress the role of the theory T in the construction of the structure M,
we denote it by M(T) = M = (M;...) and call it the canonical structure of the
theory T

4.8.2 Example. The constant terms in the language of Peano Arithmetic PA are
composed of the constant symbols 0 and 1 by means of the operations of addition
and multiplication. For instance, 1, 04+ 1, 1 +0, 1-1, 0+ (1-1) are five different
constant terms, however, they all denote the same natural number 1, and, at the
same time, the equality between any pair of them is provable in PA. In other words,
1 ~pa0+1~psa14+0~pa1l-1~psy 0+ (1-1). In fact, there are infinitely many
constant terms ¢ in the language of PA such that ¢ ~pa 1. Similarly, the natural
number 2 denotes the equivalence block of the constant term 1+ 1 or of any constant
term provably equal to it, etc. The reader should realize that the canonical structure
M(PA) of the theory PA coincides with its standard model (N;+,-,0,1).
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It would be nice if we could guarantee that M(T) E T, i.e., that the canonical
structure M(T) is a model of T for any consistent first-order theory T' (in a language
L containing at least one constant symbol). Unfortunately, this is not always the
case. Nevertheless, we can prove that M(T') E T for theories satisfying a couple of
conditions, to be formulated below.

The first of these conditions is the completeness of the theory T, similarly as in
Propositional Calculus. The second condition has no propositional analogue. Given
an L-formula ¢(z) (with a single free variable z), a constant L-term ¢t is called a
witness of the sentence (3 x)p(x) in the theory T if

TH (3x)p(z) = ¢(t)

(Notice that the substitution of a constant term for any variable is always admissible.)
Since we always have T F ¢(t) = (Fx)p(x), ¢ is a witness of (Fx)p(z) in T if and
only if

TE @a)p(x) < »(t)

Is it the case, then we have T F (Fx)¢(x) if and only if T F o(t).
A theory T in a first-order language L (containing at least one constant symbol) is
called a Henkin theory if every L-sentence of the form (3x)p(x) has a witness in 7.

4.8.3 Proposition. Let T be a complete Henkin theory in a first-order language L
(containing at least one constant symbol). Then M(T) & T, in other words, the
canonical structure M(T') of the theory T is a model of T.

Demonstration. We will show that, for any closed L-formula ¢, we have
THe if and only if M) E ¢ (%)

This already implies the needed conclusion M(T') E T. We will proceed by induction
on the complexity of .

Every closed atomic L-formula ¢ has the form t = s or r(¢y,...,t,) where ¢, s and
t1, ..., t, are constant terms and r is an m-ary relational symbol. Thus for atomic
sentences (*) is true according to the definition of the structure M(T).

Now, it is enough to perform the induction steps for the logical connectives — and
A, and the existential quantifier 3.

Assuming (x) for ¢, we’ll verify it for ¢ by showing that the conditions T F -
and M(T) E —p are equivalent. T F —¢ implies T I/ ¢ since T is consistent; the
reversed implication follows from the completeness of T'. Thus the conditions T+ -
and T' I/ ¢ are equivalent. However, T' I/ ¢ is equivalent to M(T') ¥ ¢ by the inductive
assumption, and that is equivalent to M(T) E —¢.

Assuming () for both ¢ and v, we’ll verify it for ¢ A ¢. Obviously, the following
conditions are equivalent: T H o A; TH @ and T F¢; M(T) E ¢ and M(T) E 9;
M(T) E ¢ A (the inductive assumption is needed to ensure the equivalence of the
second and the third condition).

Finally, assuming () for all the sentences ¢(t) where t is a constant term, we
will verify it for the sentence (Fz)p(z). Since T is a Henkin theory, the sentence
(3x)¢(x) has some witness ¢ in T', hence the condition T + (Fx)¢(z) is equivalent
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to the existence of some constant term ¢ such that T F ¢(t). By the inductive
assumption, this is equivalent to the existence of some constant term ¢ such that
M(T) E p(t), ie., M(T) E ga(t~) Since M(T') = (M;...) and M = K/~ consists
entirely of elements of the form ¢ where ¢ is a constant term, the last condition is
equivalent to M(T) E ().

4.8.4 Exercise. Assume that S is a contradictory theory in a first-order language
L (containing at least one constant symbol). Describe its canonical structure M(S)
and realize that it is not a model of S. Find complete (hence consistent) theory T in
L such that M(S)=M(T)ET.

Using the Axiom of Choice it is possible to prove the following theorem. The
interested reader will find its proof in the final Section 4.11. Dealing with a fixed
first-order language L, a new symbol (no matter whether a constant, functional or
relational one) always means a specific symbol not occurring in L.

4.8.5 Theorem on Complete Henkin Extensions. Let T be a consistent theory
in a first-order language L = (F,C, R,v). Then there is an extension of L by a set
D of new constant symbols to a first-order language Lp = (F,C U D, R,v) and an
extension of T' to a complete Henkin theory T DO T in the language Lp.

We will use the last Theorem in the demonstration of the following result, which
is an alternative version of the Completeness Theorem.

4.8.6 Godel’s Completeness Theorem. Every consistent first-order theory T has
some model AF T.

The reader should realize that also the other way round, if a first-order theory has
some model then it must be consistent, in other words, a contradictory first-order
theory cannot have any model. (This is the alternative version of the Soundness
Theorem.)

Demonstration. Let T be a consistent theory in a first-order language L, the first-
-order language Lp be an extension of L by certain set D of new constant symbols,
and T D T be a theory in Lp forming a complete HeAnkin extension ofA T. According
to the last Proposition, the canonical structure M(T) of the theory T is a model of
T, ie., M(f) F 7. Since T C T, we have M(f) E T, hence M(f) is a model of T,
as well.

Those who feel puzzled by the fact that T is a theory in the language L, while
M(T) is an Lp-structure, can form the restriction A = M(T) [ L of the Lp-struc-
ture M(f ) to the language L. Then A is already an L-structure and, obviously,
AET.

Finally we can prove the original form of the Completeness Theorem. We state it
in the form comprising the Soundness Theorem, as well.

4.8.7 Completeness Theorem. Let T be a theory in a first-order language L.
Then, for every L-formula v, T F 1 if and only if T F 1.
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Demonstration. 1If T F 1) then T F 1 by the Soundness Theorem 4.4.8. To show the
converse, assume that T F 1, nevertheless T' I/ 1. Without loss of generality we can
assume that 1 is closed. (Otherwise, we can replace ¥ by the sentence (V 1, ..., 2, )1,
which we denote by 1, where z,...,x, are all the variables occurring freely in /.
Then we have 7' F ¢ if and only if 7' F +, and T F ¢ if and only if T F 1.)
As 4 is closed, from T I/ ¢ it follows that the theory T'U {—} is consistent by
Corollary 4.5.3 on Proof by Contradiction. Then, according to Gédel’s Completeness
Theorem, T'U {—t} has some model A. Then A is a model of the theory T such that
A E —). However, since T' F 1), we have B F 1) for every model B of T’ in particular,
A E . This contradiction proves that T F .

4.9 The Compactness Theorem

Once we have established Gédel’s Completeness Theorem, the first-order version of
the Compactness Theorem can be demonstrated as its corollary in essentially the same
way as its Propositional Calculus version. We leave it to the reader as an exercise.

4.9.1 Compactness Theorem. Let T be a theory in a first-order language L. Then
T has some model if and only if every finite subtheory Ty of T has some model.

However, unless its Predicate Calculus version, the first-order version of the Com-
pactness Theorem has several important consequences. We confine ourselves to just
some few examples. At least in some of them the reader should experience the feeling
that the Compactness Theorem enables to prove the existence of certain models of
some theories almost —if not even literally —out of nothing.

To start with, the reader should realize the following immediate consequence of the
Compactness Theorem.

4.9.2 Corollary. Let T, S be two theories in a first-order language L. Then the
theory T U S has some model if and only if, for every finite subtheory U C S, the
theory T'UU has some model.

A first-order theory is said to have arbitrarily big finite models if for every natural
number n > 1 there is a finite model A = (A4;...) of the theory T such that |A| > n.

4.9.3 Theorem. Let T be a theory in a first-order language L. If T has arbitrarily
big finite models, then T has some infinite model, as well.

Demonstration. For every n > 2 we denote by o, the following sentence in the
language of pure equality:

(Elxl,...,xn)< /\ T #fﬂj)

1<i<j<n

Then, for any L-structure A = (4;...), we have A F o, if and only if |A4| > n.
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For each n > 2 we denote by S, the first-order theory with axioms o3, ..., 0, and
by S = {o,: 2 < n € N} the theory formed by all the axioms o,. Obviously, a
first-order structure A is infinite if and only if AFE S.

Assume that T" has arbitrarily big finite models. It follows that each of the theories
T U S,, where n > 2, has some model. Then, however, for every finite subtheory
U C S, there is some n > 2 such that U C .S,,. Since any model of the theory T'U S,,
is a model of TUU, the theory TUU has some model. By the Compactness Theorem
the theory T'U S has some model A, as well. This A is an infinite model of T

4.9.4 Exercise. Let T be a first-order theory in the language of the Theory of unitary
and ¢ be a closed formula in this language.

(a) Show that if 7 has as its models unitary rings of arbitrarily big finite charac-
teristic then it has as a model also a unitary ring of characteristic co.

(b) Show that the characteristic of a field is either a prime or oo and prove that if
T has as its models fields of arbitrarily big prime characteristic then it has as a model
also a field of characteristic co.

(c) Show the following Robinson’s Principle: If the sentence ¢ is satisfied in every
field of characteristic oo then there is a prime number p such that ¢ is satisfied in
every field of prime characteristic ¢ > p.

Another striking consequence of the Compactness Theorem is the existence of
nonstandard models of Peano Arithmetic, first noticed by Thoralf Skolem.

4.9.5 Theorem. Peano Arithmetic has some nonstandard models.

Demonstration. Let us extend the language of PA by a new constant symbol ¢q. Let
Xn denote the formula ¢ # n in this extended language (recall that every natural
number n coincides with the constant term (...(0+1) +...4+ 1) + 1 in the language
of PA, obtained by adding 1 repeatedly n times to 0).

We introduce the theories S = {x,: n € N} and S, = {x0,X1,---,Xn} for each
n € N. Interpreting the symbol ¢ as the natural number ¢™» = n + 1, we obtain the
model M,, = (N;+,-,0,1,n+1) of the theory PA US,,. By the Compactness Theorem
it follows, that also the theory PAUS has some model M = (M;+,-,0,1,¢). In this
model, the interpretation ¢™ € M of the symbol ¢ differs from all the constant terms
n € N, thus (M; +,-,0,1) is a nonstandard model of PA.

Intuitively, (M;+, -,0, 1) can be viewed as a number system extending the standard
natural number system (N;+,-,0,1) by some ideal “infinite” natural numbers, with
one of them represented by (the interpretation of) the constant symbol gq. Then of
course, ¢—1, g+1, 2q, ¢°, etc., represent different infinite elements of M. Moreover, if
p € M is any infinite element then so is p—1, since if p—1 were finite then p = (p—1)+1
would be finite, too. Thus the nonempty set of all infinite elements of M has no least
element, seemingly contradicting the Well Ordering Principle implied by the Scheme
of Induction of PA. Nonetheless, this paradox has a simple resolution: the sets of
finite and infinite elements in M, respectively, are not first-order expressible. This
means that there are no formulas ¢(x, uy, ..., uy), ¥(x,uy,...,u,) in the language of
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PA and no (finite or infinite) elements p1,q1, ..., Pn, ¢n € M such that

{a € M: ais finite} = {a € M: MEp(a,p1,...,pn)}
{a € M: ais infinite} = {a € M: M EY(a,q1,...,qn)}

Similar accounts show that there are also nonstandard number systems
(*R;+,-,0,1), extending the standard number system (R; +, -, 0, 1) of all real numbers
and satisfying all the axioms of the Theory of Real Closed Fields, having the same
first-order properties as (R; +,+,0,1). Such number systems contain, besides standard
reals, also infinite (infinitely big) and infinitesimal (infinitely small) number quanti-
ties. Using them, it is possible (among other things) to develop the infinitesimal (i.e.,
the differential and the integral) calculus in an intuitively appealing way, close to its
historically original form, in the spirit of Newton, Leibniz, Euler and others, and that
way to rehabilitate and justify the approach abandoned during the 19*" century in
favor of the techniques of limits and the ed-analysis.

4.10 Cardinality of Models and Skolem’s Paradox

A detailed inspection of the proof of Godel’s Completeness Theorem (both in Sec-
tion 4.8 as well as Section 4.11) shows that the construed model satisfies an additional
cardinality specification.

The cardinality of a first-order language L = (F,C, R,v) is defined as

IL]] = [Form(L)| = max(|F|,|C], |R],Xo)

A first-order language L is called countable if ||L|| = Ng. Obviously, any first-order
language with just finitely many specific symbols is countable.

It is clear that the set K of all constant terms of any first-order language L has
the cardinality |K| < | Term(L)|. The base set M of the canonical structure M(T') =
(M;...) of any theory T in the language L is a quotient M = K/~r, therefore
|M| < |K|. Thus the canonical structure M(T) = (M;...) of any theory in a first-
-order language L has the cardinality

[M] < |K| < | Term(L)[ < |Form(L)| = |||

Similarly, the set D of new constant symbols, added to the language L for the sake of
construction of the complete Henkin extension T' = T;Ir of T, has the cardinality || L||,
again. Thus the new language Lp has the same cardinality as the original language L.
Putting things together, we see that the canonical structure M (T') = (M;. .. ) still has
the cardinality |M| < ||L||. As a consequence, we obtain the following strengthening
of Gédel’s Completeness Theorem.

4.10.1 Theorem. Let T be a consistent theory in a first-order language L of cardi-
nality |L|| = a. Then T has a model M = (M;...) of cardinality |M| < a.

4.10.2 Corollary. Every consistent first-order theory in a countable language has a
countable model, i.e., a model M = (M;...) of cardinality at most N,.
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Realizing that the usual language of Set Theory has a single specific symbol, namely
the binary relational symbol € for the membership relation, we readily obtain:

4.10.3 Corollary. Any of the set theories ZF, ZFC (if it is consistent) has a count-
able model M = (M;e™M).

Moreover, by Mostowski Collapse Theorem, we can arrange that a C M for a € M,
and a €M b if and only if a € b for all a,b € M. Then, according to the Soundness
Theorem 4.4.8, everything that can be proved in Set Theory must be satisfied in
M. In particular, there are sets NM, RM ¢ M playing in M the role of the set of
all natural numbers and of the set of all real numbers, respectively. However, since
NM C M, RM C M, both the sets NM, RM are countable, hence (as it is clear
that none of them can be finite) there is a bijective mapping f: NM — RM. On the
other hand, Cantor’s Theorem “the set R of all real numbers is uncountable,” which is
provable in Set Theory, must be true in M, as well. This sounds like a contradiction.

This paradox was discovered by the Norwegian mathematician Thoralf Skolem
in 1922. However, Skolem derived it from the Léwenheim-Skolem Downward Theo-
rem (which we will deal with later on) and not from Godel’s Completeness Theorem
(though it was known to him well before Godel proved and published it in 1930, but
he neither proved it nor formulated it explicitly). Skolem’s Paradox is not a contra-
diction proving the inconsistency of Set Theory. It can be resolved in the following
way: The bijection f: NM — RM does not belong to the model M; in fact there
is no function f € M establishing a bijective correspondence f: NM — RM. Thus
Cantor’s Theorem still holds in M. Informally, the set R™ is uncountable just from
the internal point of view (i.e., as a set belonging to the model M), while from the
external point of view it is still countable. Nevertheless, Skolem’s Paradox indicates
that the notions like countability or uncountability, similarly as several other set-
theoretical concepts concerning infinite cardinal numbers, are of a relative nature and
lack an absolute character.

4.11 Proof of the Theorem on Complete Henkin Extensions

Let (A4; <) be a partially ordered set. An element m € A is called mazimal if there
is no element a € A such that m < a.

Any subset T C P(X) of the powerset of any set X will be referred to a sa a system
of subsets of X and automatically regarded as a partially ordered set (7; C) with
the relation of set-theoretical inclusion. We say that a system 7 C P(X) of subsets
of a set X has finite character if for any T C X we have T' € T if and only if U € T
for any finite set U C T.

We record without proof the following consequence of the Axiom of Choice; let’s
remark on the margin that it is even equivalent to it.

4.11.1 Teichmiiller-Tukey Lemma. Let X be any set and T C P(X) be a system
of finite character of subsets of X. Then for every T € T there exists a maximal
element M € T such that T C M.
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Let us take for X the set & = Form(L) of all formulas of some first-order language
L and denote by T C P(P) the system of all consistent theories in L. As already
noticed in the proof of the Compactness Theorem, a first-order theory is consistent
if and only if every its finite subtheory U C T is consistent. In other words, the
system T C P(P) of all consistent theories in L has finite character. That way
the Teichmiiller-Tukey Lemma implies that every consistent theory T in a first-order
language L can be extended to a maximal consistent theory M D T in L.

4.11.2 Exercise. Let T be a theory in a first-order language L. We denote by
T" ={p cForm(L): T+ ¢}

the set of all L-formulas provable in T'. Show that T is complete if and only if 7" is
a maximal consistent theory.

The above Exercise has furnished us with the last piece of knowledge needed in
order to establish the following result.

4.11.3 Lindenbaum’s Theorem. Every consistent theory T in a first-order lan-
guage L can be extended to a complete theory T D T in L.

4.11.4 Remark. Although (an equivalent alternative formulation of) the Axiom of
Choice plays a crucial role in the proof of Lindenbaum’s Theorem, it is known that
this theorem is weaker than AC, in the sense that AC cannot be proved in Zermelo-
-Fraenkel Set Theory assuming Lindenbaum’s Theorem, only.

Next we show a result on Henkin extensions of consistent theories.

4.11.5 Theorem on Conservative Henkin Extensions. Let T be a consistent
theory in a first-order language L = (F,C, R,v). Then there is an extension of L by
a set D of new constant symbols to a first-order language Lp = (F,C' U D, R,v) and
a conservative extension of T to a Henkin theory Ty O T in the language Lp.

Demonstration. Our aim is to endow every L-sentence (3 z)p(z) with a new witness-
ing constant d, and to extend the theory T' by the corresponding witnessing axiom
(Fz)p(x) = ¢(d,). However, doing so for all L-formulas ¢(z), the language L is likely
extended and new sentences (3 x)¢(x) calling for their own witnessing constants arise.
That’s why we have to iterate the extension procedure recursively.

Let us denote by Ly = L the original first-order language and by @, the set of all
Lo-formulas with a single free variable . For every formula ¢ € @, we introduce a
new constant symbol d,, in such way that for different formulas ¢, 1) € @¢ the symbols
dy, dy are distinct, as well. We denote by Dy = {d,: ¢ € $o} the set of all these
constants, by L the extension of the language L by the set Dy of the new constants
and by

Wo ={(F2)p(x) = ¢(dy): ¢ € Do}

the set of all the witnessing axioms for the sentences (3x)¢(x) where ¢ € &y.



96 4 FIRST-ORDER LOGIC

Assuming that the set of formulas @,,, the set D,, = {d,: ¢ € P,} of constant
symbols, the language L,y1, and the set W, = {(Fz)p(z) = ¢(d,): ¢ € P} of
witnessing axioms are already defined, we denote by @, 11 the set of all formulas of
the language L, 1 with a single free variable x not belonging to the union UZ:O L
For every ¢ € @,,1 we introduce a new (i.e., not occurring in the language L, 11)
constant symbol d,, with distinct symbols d,,, dy, corresponding to different formulas
@, ¥. Next we denote by D41 = {d,: ¢ € §,,11} the set of all the recently added
constants, by L,yo the extension of the language L, 1 by the set D, ;1 of these
constants and by

Wi ={(F2)p(z) = ¢(dy): ¢ € Pry1}
the set of all witnessing axioms for the sentences (3 x)¢(x) where ¢ € @y, 11.

Finally we put D = J,,cy Dny W = U,,ey Wn and denote by Lp the extension of
the language L by the set of the new constant symbols D. We claim that Ty = TUW
is a Henkin theory in the language Lp and a conservative extension of T

It can be easily seen that every Lp-sentence of the form (3z)p(x) has a witness in
the theory Tg: Since ¢ contains just finitely many constant symbols from D (if any),
there is the smallest n € N such that ¢ contains no symbol from D,, for all m > n.
Then ¢ € &,, and the sentence (F2)p(z) = ¢(d,) belongs to W, hence to Ty. Thus
the constant symbol d, € D is a witness of the sentence (3z)p(x) in Ty.

In order to show that Ty is a conservative extension of T it is enough to verify that
any L-sentence v provable in Ty is provable already in T. If Ty F 1 then there are
finitely many witnessing axioms 6; of the form (Fx)p;(z) = ¢;(d;) with 1 < i < k,
where we write d; instead of d,, such that T U {6:1,...,0,} F ¢. If k = 0 then
already T F v and we are done; thus we can assume that & > 1. Then it is enough to
show that the number k of witnessing axioms can be anytime reduced by 1.

There’s again the smallest n such that none of the formulas ¢, . .., ¢ contain any
constant symbol from D,, for all m > n. Then ¢; € &,, for some j € {1,...,k} and
none of the witnessing sentences 6; for ¢ # j contains the symbol d;. For brevity’s
sake we denote ¢; by ¢, d; by dand © = {6;: 1 <i <k, i # j}. As a consequence
of the Deduction Theorem 4.5.1, we have

TUO ((Fz)p(x) = p(d)) = 1

Now the reader is asked to realize that, for any propositional forms A, B, C, both
the propositional forms

(A=B)=0C)= (-A=0C) and (A=B)=0C)= (B=0)

are tautologies, therefore, by the Post Completeness Theorem 3.8.3, they are provable
just from the propositional logical axioms. In particular, both the formulas

(Bo)e(x) = (d) =) = (- z)p(x) = )
(Bo)e(z) = (d) = ¥) = (e(d) = V)

are provable just from the logical axioms of Predicate Calculus. Then, by Modus
Ponens, we have both

TUOF -~(3z)p(z) = as well as TUOF p(d) =1
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Since the symbol d doesn’t occur in any of the specific axioms of the theory T'U 6,
applying Lemma 4.7.1 on Constants to the latter item of the last couple of relations
we obtain

TUOF (Va)(p(z) =)

Since 9 is closed, the variable x is not free in 1, thus, according to (d) and the third
equivalence in (b) of Exercise 4.4.11 on the prenex normal form,

TUOF Bz)p(z) =9

This together with the former item of the above couple of relations gives TUO F 4 in
view of Corollary 4.5.4 on Proof by Distinct Cases. Since the set © consists of k — 1
witnessing axioms, only, we are done.

4.11.6 Exercise. Show directly, i.e., without referring to the last Theorem, that the
Henkin extension T of the consistent theory T constructed in its demonstration
is consistent. (It can be done in a similar but slightly simpler way than in the
demonstration of conservativeness of the extension T}y .)

Combining the two recently established theorems, we can finally prove the an-
nounced result.

4.8.5 Theorem on Complete Henkin Extensions. Let T be a consistent theory
in a first-order language L = (F,C, R,v). Then there is an extension of L to a first-
-order language Lp = (F,C U D, R,v) by a set D of new constant symbols and an
extension of T to a complete Henkin theory T DO T in the language Lp.

Demonstration. Let Ty be the conservative Henkin extension of the theory T in the
language Lp = (F,CUD, R, v) construed as above. Then, by Lindenbaum’s Theorem,
there is a complete theory T=T O Ty in the same language Lp. Obviously, T is
a Henkin theory, as well.



5 Godel’s Incompleteness Theorems

Godel’s Incompleteness Theorems belong to the most remarkable achievements of the
20*" century mathematics, shedding light on the limitations of formal methods and
still raising philosophical questions about the nature of human thought, its possibili-
ties and relations to our brains, to computers, etc.

Kurt Godel’s achievement in modern logic is singular and monumental —
indeed, it is more than a monument, it is a landmark which will remain visible
far in space and time. |[...] The subject of logic has certainly completely

changed its nature and possibilities with Gddel’s achievement.
(John von Neumann)

5.1 Liar Paradox and the Paradoxes of Russell, Cantor and Berry

Let us recall the famous ancient Liar Paradoz, also known as the Epimenides Paradoz,
usually ascribed to FEubulides of Miletus. In it the Cretan Epimenides pronounces the
following sentence:

“All the Cretans are liars,”

tacitly assuming that “liar” means a person that always lies. If both the sentence
and the tacit assumption are true, then Epimenides must be a liar and his statement
must be a lie, as well. Then at least one Cretan is not a liar (in the sense that he does
not lie all the time). Thus, finally, the sentence is not true, so Epimenides has told
us a lie. This is not a contradiction, however, the fact that pronouncing a single false
sentence can guarantee the existence of a person not lying all the time is still fairly
paradoxical. The strong version of the Liar Paradox is due to the medieval French
scholar Jean Buridan:

“What I am telling right now is a lie.”
Even a simpler formulation is given by the following self-referential sentence:
“This sentence is not true.”

At least at a glance it looks like a proposition, thus is seems legitimate to ask the
question: “Is it true or false?” If it is false, then it must be true. Similarly, if it is
true, then it cannot be true, hence it must be false. We can conclude that it is true if
and only if it is not true. This is what we have in mind calling it the strong version
of Liar Paradoz.

In everyday life we need not to worry too much about the Liar Paradox. We can do
away with it simply by marking that sentence as making no sense and not to care of it
any more. However, the situation changes radically if such a self-referential sentence

98
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could be formulated within some formal deductive system like, e.g., an axiomatic first-
-order theory. Such a theory would be necessarily inconsistent. This namely happened
to the original version of Cantor’s “naive” Set Theory.

Cantor’s Set Theory used the unlimited version of the Comprehension Principle in
forming sets:

For any “reasonable” property P(x) one can form the set {x: P(x)} of all
objects x having this property.

However intuitively appealing this principle might appear, it is fairly hazy, unless
we make clear which properties we consider as “reasonable”. What’s even worse,
this principle enables to formulate a set-theoretical version of Liar Paradox, namely
Russell’s Paradox, named after the British logician and philosopher Bertrand Russell:

Cantor’s Comprehension Principle allows us to form the set
R={z:zisasetand z ¢ x}

of all sets  not belonging to itself.

Then the question: “Does the set R belong to itself?” immediately produces a con-
tradiction. Indeed, we have R€ R < R ¢ R.

Thus the original version of Cantor’s Set Theory is inconsistent; the unlimited
Comprehension Principle makes it possible to reproduce the Liar Paradox inside of
this theory.

Liar Paradox can be avoided by restricting Cantor’s Comprehension Principle to
the following limited form:

For every set M and any “reasonable” property P(x) one can form the set
{z € M: P(x)} of all objects x from the set M having this property.

Then the previous formation of the set R becomes illegal, and Russell’s Paradox
disappears. Instead, it is transformed to the following fact:

There is no set of all sets.

Indeed, if there were the set V of all sets, then we could legally form the set
R={zecV:xz¢uz}

of all sets x not belonging to itself, and obtain the contradiction R € R < R ¢ R
once again.

Another set-theoretical paradox was discovered by Cantor himself. One of his
famous theorems states that, for every set X, the cardinality of its power set

P(X)={A: AC X}

is less then that of X; in symbols |X| < |P(X)|. Taking for X the set V of all sets we
obtain |V| < |P(V)]. On the other hand, as each element A of the power set P(V) is a
set again, we have P(V)) C V, henceforth |P(V)| < |V|, which is a contradiction. Also
this paradox can be avoided by assuming that the totality V of all sets is not a set.
In Cantor’s own words, V is an “inconsistent set”. Therefore, neither the powerset
construction nor Cantor’s theorem can legitimately be applied to it.
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Berry’s Parador demonstrates the need to clarify the vague concept of a “reason-
able property” and that way to make clear which properties can be used even in the
limited Comprehension Principle.

Consider the set A of all natural numbers which can be defined by some phrase
of English language consisting of less than twenty words. Since the English language
has a finite vocabulary, there are just finitely many English phrases consisting of less
than twenty words. Hence the set A is finite, and, as the set N of all natural numbers
is infinite, there exist natural numbers not belonging to the set A. In other words
the complement N \ A is nonempty, thus, according to the Well Ordering Principle,
it contains the smallest element. Then this natural number is defined by the English
phrase

“The smallest natural number which cannot be defined by
any English phrase consisting of less than twenty words”

which has eighteen words, only. Hence the smallest element of the set N\ A belongs
to the set A, as well. However, this is a contradiction, since AN (N~ A) = 0.

5.2 In Quest for a Way Out of the Crisis

The discovery of paradoxes in Cantor’s Set Theory at the turn of the 19*" and 20"
century threw the mathematics of that time into a deep crisis. Moreover, it happened
shortly after Set Theory had become widely accepted and recognized as the universal
foundations of the whole of mathematics, providing it with a general common language
and a firm ground on which all mathematical branches could be formulated and
presented in a uniform way. Therefore the task to find a way out of the crisis became
highly acute.

Some mathematicians reacted by refusing completely the conception of actual in-
finity forming one of the cornerstones of Set Theory (H. Poincaré, L. E. J. Brouwer).

Namely Brouwer established the doctrine of intuitionism, insisting that the in-
finity can be treated just as a potential and never completed process of growth or
decay beyond any limit. He also proposed a revision of logic, refusing some clas-
sical logical laws (e.g., the Law of Excluded Middle ¢ V =, or the quantifier law
=(Vz)—p(x) = (Fz)p(x)) as inapplicable within the realm of potentially infinite do-
mains. The competing doctrine of logicism suggested to develop mathematics as a
branch of logic (G. Frege, B. Russell, A. N. Whitehead) and to avoid the self-reference
phenomenon, which they found responsible for the contradictions, by means of a fairly
complicated hierarchy of the Theory of Types. However, none of these conceptions
could compete with the approaches offered by the Set Theory making use of the full
power of classical logic and, at the same time, avoiding the cumbersome hierarchy of
the Theory of Types, along with preserving the conception of actually infinite sets.

The axiomatic system of Set Theory designed by Ernst Zermelo, and later on up-
graded by Abraham Fraenkel, became the generally accepted foundations of most of
the modern mathematics. The Paradoxes of Russell, Cantor and Berry (and some
similar ones) were avoided by a cautious formulation of the Scheme of Comprehen-
sion, allowing to single out new sets just as subsets of sets given in advance by means
of properties described by set-theoretical formulas. Three exceptions of sets, still de-
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scribed by set-theoretical formulas, but not singled out from any in advance given set,
are allowed by the Axioms of Pair, Union and Power Set. (See 2.7 and 4.3.9.)

No one was able to reproduce the known paradoxes, nor to produce any contradic-
tion within the Zermelo-Fraenkel axiomatic system with the Axiom of Choice ZFC.
Unfortunately, this does not exclude the possibility that, all the same, there are some
contradictions, hidden deeply under the surface. This raised the task to prove the
consistency of ZFC or of some other axiomatic system of Set Theory, capable to
undertake the role of the foundations of mathematics. The project of proving the
consistency of the foundations of mathematics was formulated by David Hilbert, the
leading figure of the that time mathematics, who also designed the central notions and
methods necessary for that purpose. The project is known under the name Hilbert’s
Program.

Hilbert’s Program was an ambitious and wide-ranging project in the philoso-
phy and foundations of mathematics. In order to “dispose of the foundational
questions in mathematics once and for all”, Hilbert proposed a two-pronged
approach in 1921: first, classical mathematics should be formalized in az-
tomatic systems; second, using only restricted, “finitary” means, one should
give proofs of the consistency of these axiomatic systems. Although Gédel’s
Incompleteness Theorems show that the program, as originally conceived, can-
not be carried out, it had many partial successes, and generated important
advances in logical theory and meta-theory, both at the time and since.
(Richard Zach, Hilbert’s Program Then and Now, arXiv:math/0508572)

5.3 Godel’s Incompleteness Theorems. Preliminary Accounts

Consider the following self-referential sentence:
“This sentence is unprovable.”

tacitly assuming that every sentence which is provable, is necessarily true. Once again
we find legitimate to ask the question: “Is that sentence true or false?” If it is false,
then it is provable, hence it must be true. This contradiction shows that it cannot be
false, hence it is true. That way we have proved that this sentence is true, in other
words, we have proved the sentence. Thus it is provable, hence, since it declares its
own unprovability, it is false. At the same time, provable sentences must be true. It
seems that we once again obtained a contradiction, conspicuously reminding of Liar
Paradox.

However, this conclusion can be avoided by making precise the concept of provabil-
ity. If it means provability within some formal axiomatic system (e.g., within some
first-order theory), then our proof of the above sentence is just an informal intuitive
argumentation showing that it is true, and not a proof within that system. Moreover,
statements about provability within a given formal system in general do not belong
to that system, hence the question of their provability within that system makes no
sense. Thus it seems that the threatening paradox can be swept away from the very
beginning.

All the same, let us admit that some formal systems could perhaps satisfy the
following two properties:
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(1) There is a sufficiently extensive distinguished class of statements formulated in
the language of that system such that all statements from this class which are
provable in the system are true in some intuitively appealing meaning of this
word.

(2) There is a statement belonging to the above mentioned distinguished class declar-
ing its own unprovability within the system.

Then that system is necessarily incomplete in the following sense:

(3) There are intuitively true statements formulated in the language of the system
(and even belonging to that distinguished class) which are unprovable within
that system.

Namely the statement belonging to that distinguished class and declaring its own

unprovability within the system is an example of an intuitively true statement which

is not provable within the system.

Now, the reader probably can hardly suppress the feeling that the existence of
such formal axiomatic systems (first-order theories) is merely hypothetical, and in
fact it should be possible to show that nothing like that can exist. Thus it might
be rather surprising to realize what the young Austrian mathematician, logician and
philosopher Kurt Godel (1906, Brno— 1978, Princeton) has proved in 1930. Namely,
according to his First Incompleteness Theorem, Peano Arithmetic, as well as any
first-order theory capable to serve as the foundations of a reasonable fragment of
mathematics, like ZF or ZFC or Principia Mathematica, provide examples of such
axiomatic systems. According to his Second Incompleteness Theorem, such systems
are capable to formulate a statement declaring their own consistency, nonetheless, if
they are consistent, they are unable to prove it, though, in that case, the statement
itself is true. As one of the consequences of Goédel’s discoveries it became manifest
that the goals of Hilbert’s Program cannot be achieved.

5.4 The First Godel Incompleteness Theorem

It is worth mentioning that Godel worked within the intentions of Hilbert’s Program
and his Incompleteness Theorems appeared surprisingly on the way, without having
been planned or anticipated in advance. We will skip almost all technical issues of
Godel’s proof and begin with displaying some final results of his coding of formulas and
proofs by natural numbers and representation of the provability relation by certain
arithmetical predicate. It should be noted that our presentation differs considerable
from Godel’s original one.

Informally, the First Godel Incompleteness Theorem states that any consistent
formal system which is sufficiently ample to include Peano Arithmetic is necessarily
incomplete, either in the sense that it contains some true propositions about natural
numbers which it cannot prove (semantic version), or in the sense that it contains
certain arithmetical propositions which it can neither prove nor refute (syntactic ver-
sion).

Let’s begin with introducing some concepts necessary for describing more precisely
the variety of first-order theories to which Godel’s results apply. A first-order theory
T in a language with finitely many specific symbols is called recursively axiomatizable
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if it has just finitely many axioms or its axioms can be effectively recognized by some
algorithm (e.g., by a computer program). A first-order theory T is called arithmetical
if there is some interpretation of Peano Arithmetic in this theory. This is to say that
there are some formulas Nat(x), Add(z,y, z), Mult(z,y, z), Zero(z), One(z) in the
language of T defining the concept of natural number, the operations of addition and
multiplication of natural numbers and the distinguished objects 0 and 1, respectively,
in such a way that for the structure of natural numbers thus obtained all the axioms
of PA can be proved in T. If T is an arithmetical theory then a formula ¢ in the
language of T is called arithmetical if it is built out of the “new” atomic formulas
of the form z = y, Add(z,y, z), Mult(z,y, z), Zero(x), One(x) by means of logical
connectives and bounded quantifications (Vxz)(Nat(z) = ¢), (3z)(Nat(z) A ¢). An
arithmetical theory T is called arithmetically correct if all the arithmetical sentences
provable in T are satisfied in (N;+,-,0,1).

An obvious example of a recursively axiomatizable arithmetically correct theory
is the Peano Arithmetic itself. Other paradigmatic examples of such theories are
recursive extensions of PA by axioms which are true in (N;+,-,0,1), as well as various
set theories like, e.g., ZF or ZFC.

Given an arithmetical sentence 6 we will say that 0 is true or valid or satisfied if it is
satisfied in the standard model of Peano Arithmetic (N; +,-,0,1). For an arithmetical
sentence of the form ¢ (kq, ..., k,), where (x4, ..., x,) is an arithmetical formula and
k1, ..., ky, are concrete natural numbers (constant arithmetical terms), we also use to
say that ¥(kq,..., k) holds or, simply, ¥ (k1,...,ky,) in that case.

Godel developed a method of coding or enumeration by means of which all the arith-
metical formulas in the language of an arithmetical theory T with a single free variable
x can be lined up in a sequence ¢o(z),1(2),...,pn(x),... in such a way that, for
each n, the formula ¢, (x) can be effectively constructed (e.g., by a program), and vice
versa, for each arithmetical formula (), its number n such that 1 (x) coincides with
on(x) can be effectively determined. If T is additionally recursively axiomatizable
then also all proofs in T' can be lined up in a sequence Ag, Aq,..., A, ... in such
a way that the correspondence k <> Ay can be effectively described (e.g., executed
by some programs) in either direction. Moreover, in that case Godel constructed two
effectively decidable ternary arithmetical predicates P(z,y, z) and R(z,y, z) of prov-
ability and refutability, respectively, such that for any natural numbers k, m, n the
following conditions are satisfied:

P(m,n, k) if and only if Ay is a proof of the sentence ¢, (m) in T
R(m,n, k) if and only if Ay is a proof of the sentence =g, (m) in T

At the same time the algorithmic decidability of the predicates P(x,y, z) and R(z, y, 2)
ensures that, for any m,n, k € N, the satisfaction of any of the statements P(m,n, k),
-P(m,n,k), R(m,n, k), “R(m,n, k), respectively, in (N; +,-,0,1) is equivalent to its
provability in PA, henceforth in T. Namely the algorithm deciding whether P(m,n, k)
holds or not provides the proof either of the statement P(m,n,k) or of its negation,
and similarly for R(m,n, k). Summing up, we have:

5.4.1 Theorem. Assume that T is a consistent recursively axiomatizable arithmeti-
cal theory. Then, for any natural numbers m, n, k, the three conditions in each of
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the following four rows are equivalent:

P(m,n,k), TtF P(m,n,k), Ay isa proof of the sentence ¢, (m) in T
R(m,n,k), Tt R(m,n, k), Ay isa proof of the sentence —p,(m) in T
-P(m,n,k), Tt P(m,nk), TkE-P(m,nk)
-R(m,n,k), T R(m,n,k), TE-R(m,n,k)

In particular, T decides both the statements P(m, n, k) and R(m,n, k) for any m, n, k.

Now, we have all the necessary ingredients needed for the formulation of Gédel’s
results. Consider the formula ~(3 z) P(x, x, z). It has a single free variable, namely z,
hence it occurs in the sequence {@,(z)}nen under some number — let’s denote it g.
Thus ¢4(z) is the above formula, and substituting the natural number g into it for =
we obtain the sentence ¢g4(g), i.e., =(32)P(g, 9, 2), saying that, for no z = k, A is
the proof of the sentence ¢4(g). In other words, the meaning of that sentence is:

wg(g): “The sentence pg4(g) is not provable in T.”

Hence ¢4(g) is an example of a self-referential sentence in the language of T' declaring
its own unprovability. On the other hand, the reader should keep in mind that ¢g4(g)
is an arithmetical statement, like, e.g., =(3z,y,2)((z + 1)* + (y + 2)* = (2 + 3)*),
saying that the diophantic equation (z + 1) + (y + 2)® = (2 + 3)* has no solution in
the domain of all natural numbers.

Thus our preliminary accounts (see 5.3) entitle us to state the semantic version of
the First Godel Incompleteness Theorem.

5.4.2 First Gédel Incompleteness Theorem. [Semantic version] If T is a recur-
sively axiomatizable arithmetically correct first-order theory then the Gédel’s sentence
©q(9) is true in (N;+,-,0,1), nonetheless, it is unprovable in T. Thus T is incapable
to prove all the true arithmetical statements about natural numbers.

In particular, neither PA nor any of the set theories like, like ZF or ZFC, can prove
all the true arithmetical statements about natural numbers.

Since we have no direct access to the infinite domain N of all natural numbers,
the semantic concept of arithmetical truth playing a key role in the semantic ver-
sion of the First Godel Incompleteness Theorem “smells of metaphysics” and may
evoke some bewilderment in the reader. It relies on our belief that (N; +,-,0,1) is a
model of PA, which, however, can hardly be considered as an obvious or firmly and
doubtlessly established fact. Nonetheless, this belief is even stronger than the belief
in the consistency of PA, which still lacks a direct, immediate evidence. Anyway, it
will be interesting to see what we can infer from this weaker syntactic assumption.

5.4.3 First Godel Incompleteness Theorem. [Syntactic version] Let T be a re-
cursively axiomatizable arithmetical theory.

(a) If T is consistent then the Gddel’s sentence ¢g4(g) is unprovable in T

(b) If T is w-consistent then neither the sentence —p4(g) is provable in T

Thus the assumption of w-consistency of T implies that T' is incomplete.
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Let us remark that w-consistency is a technical condition, stronger than mere
consistency, which we will formulate in the course of the demonstration of (b).
Demonstration. (a) Assume that the sentence p4(g) is provable in T'. From this point
on we can proceed in twodifferent ways. We will present both of them.

First, the provability of ¢4(g) means that this sentence has some proof, say Ay,
in T. Then P(g,g,k) holds, and due to the algorithmic nature of the predicate
P(z,y,z), the statement P(g,g,k) is provable in T. It follows that (32)P(g, g, 2),
which is equivalent to =p4(g), is provable in T', as well. Thus we have both T F ¢,4(g)
and T F —p,4(g), contradicting the consistency of T

The second argument starts with realizing the form of ¢4(g): in fact we have as-
sumed that T+ —(32)P(g, g, z), hence T+ (V z)—P(g, g, z), since the second sentence
is equivalent to the first one. It follows that T'F —P(g, g, k) for each k € N. Therefore,
- P(g,g,k) holds for each k, by Theorem 5.4.1. Tt means that none of the proofs Ay
is a proof of the sentence ¢4(g) in T', in other words, ¢4(g) is unprovable in T'. This
contradicts our original assumption which is henceforth wrong. Therefore ¢,4(g) is
unprovable in T

(b) Assume that the sentence —py(g), which is equivalent to (32)P(g,g9,2), is
provable in 7. If there were some k € N such that P(g,g,k), we could infer that
Ay, is a proof of ¢4(g) in T. Then both ¢4(g) as well as =y, (g) were provable in T,
and we could refute our initial assumption that T' - —p,4(g) as contradicting the mere
consistency of T' (and get through without the assumption of its w-consistency).

So does the provability of the arithmetical sentence (3 z)P(g, g, z) imply that there
is indeed some k € N such that P(g, g, k)? The positive answer to this question seems
obvious at a glance. If there were a constructive proof of the statement (3 2)P(g, g, 2),
it would give us some concrete k such that P(g, g, k). Unfortunately, we cannot ex-
clude that the proof of the statement (3 z)P(g, g, z) proceeds in an indirect noncon-
structive way, just deriving a contradiction from the assumption —(32)P(g, g, 2), and
giving not even a hint how the k such that P(g, g, k) could be found. To conclude,
our optimism was precocious, and our original idea of demonstration doesn’t work.
To get through we need something more.

An arithmetical theory T is called w-consistent if, for no arithmetical formula (z),
all the sentences (3 2)v(z), ~9(0), (1), ..., 7p(k), ...are provable in T.. Obviously,
any w-consistent arithmetical theory must be consistent.

Now assuming that T" is w-consistent and 7'+ (3 z)P(g, g, z), we can conclude that
Tt —P(g,g,k) for some k. Then P(g,g,k) holds for this k¥ by Theorem 5.4.1. From
this point on the original argument can be applied.

The following Example illustrates the difference between a purely existential and
a constructive proof of an existential statement.
5.4.4 Example. We will prove the theorem:
“There exist irrational numbers a,b > 0 such that the number a® is rational.”

Proof. Tt is known (and easy to show) that v/2 is an irrational number. Then the

number /2"~ is either rational or irrational. If it is rational, we are done by taking
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a=>b=+2 If \/5\/§ is irrational, we put a = \@\@ and b = /2. Then both a, b are
irrational and

o= (va®) o (va) ) - () o

Since a® = 2 is obviously rational, we are done again.
The reader should realize that our proof is purely existential, making use of the

2
Law of Excluded Middle. We do not know whether the number \/if is rational or ir-
rational, therefore we do not know which one of the couple of possibilities really works.
From the intuitionistic or constructivist viewpoint such proofs are unacceptable. A

constructive proof would require to decide whether /2"~ is rational or irrational and
provide an explicit unambiguous choice of the pair a, b.

2
In fact it is known (but not so easy to show) that the number \/5\[ is irrational,
hence the second possibility takes place in the proof above.

5.4.5 Exercise. Assume that Peano Arithmetic is a consistent Henkin theory. Show
that, in such a case, it is necessarily w-consistent. (Hint: Use the fact that every
constant term in the language of PA is provably in PA equal to some term of the
form (... (04+1)+---+1)+1 (with n occurrences of 1), i.e., to the standard natural
number n.)

Later on, in 1936, Barkley Rosser formulated a modification of Godel’s statement
—(32)P(g,g,z) making possible to avoid the assumption of w-consistency and to
prove the incompleteness of recursively axiomatizable arithmetic theories assuming
their mere consistency.

Consider the arithmetical formula (V2)(P(z,z,2) = (Ju < 2)R(z,z,u)). Let us
denote by r its number in the list {¢y(z)}nen. Substituting r for z into the formula
©r(x) we obtain the self-referential sentence ¢,.(r), i.e.,

(V2)(P(r,r,z) = (Fu < 2)R(r,r,u))

Its meaning can be deciphered as follows:

or(r): “If the sentence @, (1) is provable in T by some proof of a given number then,
among the proofs with at most that number, there is a proof of its negation
—(r) inT.”
Needless to say, the following version of the First Incompleteness Theorem is of
syntactic nature.

5.4.6 Godel-Rosser Incompleteness Theorem. Let T be any recursively axiom-
atizable arithmetical theory. If T is consistent then neither the Rosser sentence
() nor its negation —,(r) are provable in T. Hence, if T is consistent then it is
incomplete.
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Demonstration. Assume that ¢,.(r) is provable and Ay is its proof in 7. Then both
the statements P(r,r, k) and (3u < k)R(r,r,u) are provable in T', as well. The latter
is equivalent to the alternative

R(r,r,0)V R(r,r, 1) V...V R(r, 7, k)

Then, however, it suffices to check the proofs Ay, Ay, ..., Ag and it is guaranteed
that one from among them is a proof of the sentence —p,.(r) in T, contradicting its
consistency.

Now, assume that —,.(r) is provable in T by a proof A;. Then we have R(r,r,1),
and the algorithm verifying this fact provides a proof of R(r,r,l) in T. Realizing that
-, (1) is equivalent to the sentence

(3 z)(P(r7 r,2) A(Vu)(R(r,r,u) = 2 < u))

we can infer that the statement (3z < )P(r,r, z) is provable in 7. Then necessarily
[ > 0, and the last statement is equivalent to the alternative

P(r,r,0) vV P(r,r,1) V...V P(r,r,l — 1)

Hence among the proofs Ag, Ay, ..., A;_1, there is a proof of the sentence ¢, (r)
in T, contradicting the consistency of T', again.

5.5 The Second Godel Incompleteness Theorem

Informally, the Second Godel Incompleteness Theorem states that any formal system
which is sufficiently ample to include Peano Arithmetic cannot prove its own consis-
tency. However, it should be realized that the statement that some formal system
is consistent is a statement about the system which is not even formulated in the
language of the system, thus the question of its provability within the system makes
no sense. Hence it is a highly important fact that some formal systems, in partic-
ular, all recursively axiomatizable arithmetical first-order theories, indeed allow for
formulation of such statements.

Given an arithmetical theory T', we say that an arithmetical sentence 6 is a con-
sistency statement for T if the consistency of T is equivalent to the validity of 6 in
(N; +,-,0,1). If T is additionally recursively axiomatizable then there are several
possibilities how to formulate the consistency statement for 7'

(1) Let us recall that a theory T in a first-order language L is inconsistent if
and only if there is a sentence 1 in the language L such that both i and — are
provable in T'. Accordingly, a consistency statement for a recursively axiomatizable
arithmetical theory T' can be formulated in the following fairly suggestive way:

Consy(T): ~(3z,y, z,u)(P(x,y,2) A R(z,y,u))

excluding the existence of any sentence of the form ¢, (m) such that both ¢, (m),
—p(m) were provable in T.

(2) Equivalently, T is inconsistent if and only if every L-sentence is provable in T'.
Thus T is consistent if and only if there is at least one L-sentence v not provable



108 5 GODEL’S INCOMPLETENESS THEOREMS

in T. We have a considerable freedom of choice for this sentence. In particular, we
can follow the “way of economy” suggested by John von Neumann and take Godel’s
statement ¢4 (g) for that purpose. Indeed, if ¢4(g) is provable in T then, as we
already have seen, T' is inconsistent. The other way round, if ¢4(g) is unprovable
in T then, of course, T' is consistent. Thus T is consistent if and only if ¢4(g) is not
provable in T'. This gives us the consistency statement

Consq(T): =(32)P(g, 9, 2),

which coincides with the formerly introduced Gédel’s statement ¢ (g).

(3) Last but not least, we can take some logical axiom or some axiom of PA; then
the requirement of unprovability of its negation is clearly equivalent to the consistency
of T. In particular, let s € N be the number of the formula z # x. Then ¢,(0) is the
sentence 0 # 0. That way we obtain yet another consistency statement:

Consg(T): =(32)P(0,s, 2)

expressing the unprovability of the sentence 0 # 0 in T

5.5.1 Exercise. (a) When dealing with the syntactic version of the First Goédel’s
Incompleteness Theorem, we have shown that from the provability of Godel’s sentence
©q(g) in T there follows the provability of its negation =4 (g) in T'. Taking for granted
that the implication

(32)P(g,9,2) = (3u)R(g,9,u)

formalizing that account is provable in 7', show that the implication
~(3z,y, z,u)(P(z,y,2) A R(z,y,u)) = ~(32)P(g,9,2)

is provable in T, as well. Therefore the provability of the consistency statement
Consy(T) from (1) in T implies the same for Gédel’s sentence ¢g4(g).

(b) Similarly as in (a), we can infer that from the provability of Gddel’s sentence
©q(g) there follows the provability of the sentence 0 # 0 in 7. Take for granted that
the implication

(32)P(g,9,2) = (3u)P(0,s,u)

formalizing this account is provable in T" and show that the provability of the consis-
tency statement Conss(7") from (3) in T implies the same for Godel’s sentence ¢,4(g),
again.

Thus for a recursively axiomatizable arithmetical theory T with the provability
predicate P(z,y, z) and, possibly, with the refutability predicate R(z,y, 2), the con-
sistency statement Cons(7") can be formulated within its language by any of the three
sentences Cons; (1), Consy(T'), Conss(T') mentioned above (as well as by many more
ones). At the same time, the assumption of provability of any of these statements in
T yields the provability of Godel’s sentence ¢q(g) in 7. Summing up we have:
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5.5.2 Second Gdodel Incompleteness Theorem. Let T be a recursively axiom-
atizable arithmetical theory. Then T allows for the formulation of its own consistency
statement Cons(T). However, if T is consistent then any of its consistency statements
Consy (T), Cons(T'), Consg(T') from the above list is unprovable in T'.

If T is a consistent recursively axiomatizable arithmetical theory then, by Godel’s
Second Incompleteness Theorem, the statement Cons(T) is not provable in T, thus,
due to the Corollary 4.5.3 on Proof by Contradiction, its extension T'U {— Cons(T") }
is consistent, as well. However, as T is consistent, the new axiom — Cons(T) is not
satisfied in (N; +,-,0, 1), hence TU{— Cons(T")} cannot be arithmetically correct even
if T were so. Next we denote, for definiteness’ sake, by Cons(T') the Godel’s statement
©g4(g). Then the statement (32)P(g, g, z), being logically equivalent to = Cons(T), is
provable in T'U {— Cons(T)}. However, since T is consistent, none of the proofs A
is a proof of the sentence ¢,4(g), i.e., of Cons(T), in T, therefore all the statements
-P(g,9,k), for k € N, are true in (N; +,-,0,1), hence provable in 7" and the more in
T U {=Cons(T)}. That way T U {—Cons(T)} is an example of a consistent theory
which is not w-consistent. On the other hand, if T is arithmetically correct then so
is T U {Cons(T')}.

In the following two exercises T denotes a recursively axiomatizable arithmetical
theory with the provability predicate P(z,y, z) and refutability predicate R(z,y, 2).

5.5.3 Exercise. The initial account in (2) suggests the following formalization of the
consistency statement for T’

Consy(T): (Fx,y)(Vz)-P(z,y, z)

declaring the existence of some sentence ,,(m) unprovable in 7. However, the fact
that its syntactic complexity (due to the quantifier prefix 3V) is one step higher than
that of the previous three consistency statements causes that it is not so easy to derive
any conclusions from the assumption of the provability of Consy(T) in T

(a) Show that Conss(T) is a consistency statement for T'.

(b) Examine the provability status of the consistency statement Consy(7T') in 7.
Realize that the mere assumption that T is consistent still does not allow us to show
neither that Consy(T") is provable nor that it is unprovable in T'.

(c) Observe that the implication ¢,4(g) = Consy(T') is logically valid. Next, show
that if T is w-consistent then the negation — Consy(T') is not provable in T.

5.5.4 Exercise. (a) Show that the Rosser sentence ¢, (1) is not a consistency state-
ment for T. What about its negation —p,.(r)?

(b) Show that both the sentences ~(3z)P(r,r, z), =(3u)R(r,r,u) are consistency
statements for 7. What is their provability status?

In view of Godel’s results it is perhaps surprising but anyway worthwhile to men-
tion that Solomon Feferman in 1960, at the cost of higher complexity, constructed
a consistency statement Cons*(PA) for Peano Arithmetic which, nevertheless, is
provable in PA. However, for such a consistency statement neither the equivalence
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Cons*(PA) < Cons;(PA) nor even the implication Cons™(PA) = Couns;(PA), for any
1 =1,2,3, is provable in PA (unless PA is inconsistent).

The other way round, the consistency of Peano Arithmetic itself (and not only
some of its consistency statements) can be proved within some stronger theories than
PA (whose consistency is, for that reason, more doubtful than that of PA). The
list obviously includes any reasonable version of Set Theory, as they allow for the
construction of the standard model (N; +, -, 0, 1) of PA. However, some fairly moderate
extensions of PA manage that job already. Gerhard Gentzen in 1936 proved the
consistency of PA by transfinite induction over the ordinal numbers less then the

countable ordinal €9 = w*” . (An outline of this method will appear in Section 5.8
on Goodstein sequences.) Godel himself in 1958 gave a proof of consistency of PA
using recursive functionals.

5.6 Attempts at Completion

There naturally arises the question whether Peano Arithmetic cannot be completed
by adding to it some new axioms of which we know that they are satisfied in the
standard model (N; +,-,0,1). One possible candidate could be recursively constructed
as follows: Let T be the theory PA itself. Given the theory T}, for ¢ € N, we
construct the sequence A§, AY,... A}, ... of all proofs in T, and the provability
predicate Py(z,y, z) for T such that, for any k,m,n € N,

Py(m,n,k) if and only if ~Af is a proof of the sentence ¢, (m) in T},

Then we put
Ty41 =Ty U{Cons(Ty)}

where Cons(T}) is any of the consistency statements Cons;(T},) for fixed i = 1,2, 3.
In other words, Ty41 is the extension of T, by the consistency axiom Cons(Ty) for
T,. Obviously, every T; is a recursively axiomatizable arithmetically correct theory.

Thus putting
T=\J7,

qeN

we obtain an arithmetically correct theory in which all the consistency statements
Cons(T,) can be proved. However, T is still recursively axiomatizable, hence all the
previous incompleteness results apply to it. In particular, T is incomplete, it can
formulate its own consistency statement Cons (T) which, nevertheless, it is incapable
to prove. Moreover, as shown by Alan Turing in 1939, Peano Arithmetic cannot be
completed even by transfinite iteration of the procedure of extending it by adding
consecutive consistency statements to it.

One of the aspects of the incompleteness of Peano Arithmetic and related theories
can be more specifically identified as the phenomenon of w-incompleteness, i.e., a kind
of “nonuniformity” of provability in them. For instance, if ¢ (z) is a formula in the
language of PA then the provability in PA of all the sentences 1(m) for any m € N
still does not imply the provability of its universal closure (V)i (z) in PA. It can
namely happen that the proofs of the particular instances ¢(0), ¥(1), ..., ¥(m), ...
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differ to such an extent that it is impossible to compose a uniform proof of the
universally quantified statement (Vz)y(z) out of them. An arithmetical theory T is
called w-complete if this cannot happen, i.e., if, for every arithmetical formula ¥ (z),
the provability in T of all the particular instances ¥ (m) for all m € N already implies
the provability of its universal closure (Vz)y(z) in 7.

A construction of a complete extension of Peano Arithmetic based on the removal
of the w-incompleteness phenomenon was proposed by S. Feferman in 1962. However,
in order to be able to extend PA to both a complete and w-complete theory he
had to sacrifice the condition of recursive axiomatization. By transfinite recursion
over the ordinal numbers less than certain limit ordinal { < w*” he constructed a
sequence of arithmetical theories {7, }o<¢ and a sequence of provability predicates
{P.(z,y, z)}a« for these theories such that

To = PA
Tot1=To U{(Va)(32)Ps(z,n,2) = (Va)pn(z): n € N} for each v < ¢

T\ = U T, for any limit ordinal A < ¢
a<A

Adding the new axioms
(Va)(3z)Palz,n, 2) = (Va)pn(x)

for n € N to the axioms of Ty, guarantees the provability of every universally quantified
statement (Vz)p,(x) in T11, once all its particular instances ¢, (m) for m € N are
provable in T,.

Finally, it can be shown that the arithmetical theory

f:UTa

a<(

is not only w-complete but also complete and w-consistent. However, in order to
derive at this conclusion we have to assume that PA is consistent. Assuming that PA
is arithmetically correct, we can infer that so is T'.

5.7 The Theorems of Tarski and Church-Turing

To complete the picture we formulate two further incompleteness results by Alfred
Tarski, and Alonzo Church and Alan Turing, respectively. Tarski’s Theorem on Un-
definability of Truth states informally that the property of arithmetical sentences
“to be true” cannot be defined by any formula in the language of those sentences.
More precisely, it says that the satisfaction relation for arithmetical formulas in the
standard model (N; +,-,0,1) cannot be expressed by any arithmetical formula. In
the theorems below we once again refer to the sequence {¢, (x)},en of arithmetical
formulas.
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5.7.1 Tarski’s Theorem on Undefinability of Truth. Let T be any consistent
arithmetical theory. Then there is no arithmetical formula o(x,y) in the language of
T such that for any m,n € N we have

(N; +,+0, 1) F (Pn(m) 4 o(m,n)

Demonstration.  Admit that such a formula o(z,y) exists. Then —o(z,z) is an
arithmetical formula with a single free variable x, thus it can be found in the sequence
{¢n () }nen under some index ¢t € N. Then the following statements are equivalent
in (N;4,-,0,1): a(t,t), ¢e(t), —o(t,t). Hence

(N;+,-,0,1) F a(t,t) & —o(t,1)
which is contradiction.

Tarski’s Theorem imposes severe limitations on the possibility of self-representation
of arithmetical theories. In order to be able to define a satisfaction formula o(z, y) for
such a theory T it is necessary to extend T to some theory T” in a “metalanguage”
whose expressive power goes beyond that of T'. For example, a satisfaction formula for
Peano Arithmetic can be defined in the Second-Order Arithmetic or in the Zermelo-
-Fraenkel Set Theory.

When dealing with decidability questions, both A. Church and A. Turing were
heavily influenced by the work of K. Gédel on completeness of the First-Order Logic
and even more by his work on incompleteness of Peano Arithmetic and other arith-
metical theories. While Church developed the so called A-calculus and used it as a
paradigmatic model of general computations, Turing designed ideal models of com-
puting devices which became known as Turing machines. Soon it became clear that
both approaches are equivalent. The proof of their Undecidability Theorem is beyond
the scope of our course.

5.7.2 Church-Turing Undecidability Theorem. Let T be any consistent recur-
sively axiomatizable arithmetical theory. Then there is no algorithm which could
decide whether any given arithmetical sentence in the language of T is provable in T'.
In particular, there is no algorithm which could decide the question of provability of
the sentence p,(m) in T for every input (m,n) € N x N.

Church also proved that there is no algorithm which could decide whether a sen-
tence in a first-order language L with at least one binary operational or relational
symbol or with at least two unary operation symbols is a “first-order tautology”, i.e.,
whether it is satisfied in all L-structures (or, which is the same, whether it is provable
just from the logical axioms). Thus there is a striking difference between First-Order
Logic and Propositional Calculus in which the tautologies can be effectively recognized
by the truth table algorithm.

While Tarski’s Theorem imposes some limits to what can be expressed by formal
languages, Church-Turing Theorem sets up some limits to what can be computed by
any mechanical or electronic device or effectively decided by means of an algorithmic
computational procedure. However, they both, together with Gédel’s Incompleteness
Theorems, of course, raise various questions about the relation of computers, human
brains and human mind or spirit.
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5.8 Goodstein Sequences

It can be objected that the true statements unprovable in PA constructed by Godel
and Rosser, like ¢4(9g), ¢r(r), Cons(PA) (no matter which possibility we choose), are
highly artificial and deprived of proper mathematical meaning and content. However,
there are indeed several known arithmetical theorems of combinatorial or number
theoretic character which, nonetheless, are unprovable in PA. As a rule, they illustrate
the w-incompleteness phenomenon at the same time. Some examples of universally
quantified statements of the form (V)i (z) unprovable in PA, nonetheless true in
(N;+,-,0,1) in the sense that all the particular instances 1(m) for each m € N are
even provable in PA, are provided by the Paris-Harrington strengthening of Ramsey’s
Theorem or by the Goodstein sequences. Both these results are in fact equivalent to
the consistency of Peano Arithmetic. We will briefly explain the nature of the latter
example.

Given a natural number b > 2, the hereditary base b expansion of any natural num-
ber m is obtained from the its usual base b expansion by expanding all its exponents
at the base b, again, doing the same with the exponents of exponents, and repeating
this procedure until all the numbers bigger than b are eliminated from this expression.
For instance, the hereditary base 2 expansion of the number m = 357 reads as follows:

357 =25 420 425 422 11 =22 4 9272 L 9P g

=92 922 4 o2 0Pl 1y

Its hereditary base 3 expansion is
357=3"+3"+3+2.3=3"2 13" 133+ 2.3
Similarly, the hereditary base 2 expansion of the number m = 1000 is
1000 = 2% + 28 + 27 426 4 25 4 23

= 92%+1 4 92% | 92%4241 | 92742 | 92741 | 9241

= 927l | 927 | 9274241 | 92742 | 92741 | 9241
On the other hand, its hereditary base 5 expansion coincides with its plane base 5

expansion:
1000 = 5* +3-53

For any natural number m we construct the Goodstein sequence of natural numbers

G(m,0),G(m,1),G(m,2),...,G(m,n),G(m,n+1),...

corresponding to m, which starts with G(m,0) = m, and having arrived at the number
G(m,n), if G(m,n) > 0 then the next item G(m,n+1) is obtained by replacing every
occurrence of the number n+2 in the hereditary base n+2 expansion of G(m,n) by the
number 1+ 3 and subtracting 1 from the result; if G(m,n) = 0 then G(m,n+1) =0,



114 5 GODEL’S INCOMPLETENESS THEOREMS

as well. For example, for m = 29, we get

(m,0) =2 +23 422 +1 =2 422+ 1 92 4
(m,1) =33 + 3341 133 11— 1 =3% 433+ 1 33 = 7625597485095
G(m,2) =4 441 44t 1 =4" 4441 13.4343.4243 .4+ 3~ 134.10'52
(m,3) =5 +51 +3.55+3.52+3.5+3—1
=5 455 £ 3.55 4+ 3.52 43542~ 102200
G(m,4) =65 +651 +3.6°+3-62+3-6+2—1
=65 465 +3.65+3-62+3-6+1~ 103305
Gm,5) =7 +7 +3.74+3.724+3.7+1—1
=77 47T 4 3.7 3. 72437 ~ 10096000
The above computations indicate that the Goodstein sequences {G(m,n)}5, grow

rapidly for any m, and not just for the particular value m = 29. Thus the following
result proved by R.L. Goodstein in 1944 is highly surprising and unexpected.

5.8.1 Goodstein’s Theorem. For every natural number m there exists a natural
number n such that G(m,n) = 0.

In fact, for m < 3, the sequence {G(m,n)}>2 , assumes the value 0 fairly quickly.
The reader can easily verify that G(0,n) = 0, for each n, G(1,0) =1, G(1,n) = 0 for
n>1,G(2,0) =G(2,1) =2, G(2,2) =1 and G(2,n) = 0 for n > 3. For m = 3 we
have

G3,00=3=2+1, GB,1)=3+1-1=3, G(3,2)=4—-1=3,
G3,3)=3-1=2, GB,4)=2-1=1, G(3,5)=0=G(3,n) forn>5
For m = 4 the first n such that G(4,n) = 0 equals the immense value 3

Formally, the proof of Goodstein’s Theorem uses transfinite induction over the
countable well-ordered set of all ordinal numbers less than the ordinal

(2402 653211 __ 1)

o

g0 = w”

i.e., the first-ordinal « satisfying w® = a. However, the main idea of this proof can
be explained easily. It consists in dominating every sequence {G(m,n)}52, with
m fixed, by a sequence {I'(m,n)}5>, of ordinal numbers I'(m,n) < &g, such that
G(m,n) < I'(m,n) and I'(m,n) > I'(m,n + 1) whenever I'(m,n) > 0, for each n.
Since the set of all ordinals < gq is well-ordered by the relation <, it cannot contain
any infinite strictly decreasing sequence. Hence each of the sequences {I'(m,n)}5
must eventually stabilize at the value I'(m, n) = 0 for some n. Then G(m,n) = 0, as
well.

The ordinal number I'(m, n) is obtained by replacing each occurrence of the term
n+ 2 in the hereditary base n + 2 expansion of the number G(m, n) by the ordinal w.
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In the particular case m = 29, we have

G(m,0) =22+ 22T1 1 92 1

<w FwT p ¥ +1=I(m,0)
G(m,1) =33+ 331 4 33

<w 4wt = T(m,1)
G(m,2) =4+ 4% 1 3.43 4+ 3.42+3.4+43

<w 4w 43043 w3 w+3=T(m,2)
G(m,3)=5"+5"4+3.55+3.52+3.5+2

<w w430 43w+ 3w+ 2=T(m,3)
G(m,4) =65+ 651 +3.63+3-62+3-6+1

<w 4wt 430 43w 3wt 1 =T (m,4)
G(m,5) =7+ 7 +3.-7+3.72+3.7

<+ 43043 w3 w=T(m,5) ...

Then the sequence of ordinals
I'(m,0) = w*" +wt 4w +1
> D(m,1) = w?” + w4 wv
>I(m,2)=w +w+3-w?+3-w?+3-w+3
>T(m,3) =w +wt +3.w3+3- W +3-w+2

>T(m,4) =w +w 143w +3-w?+3-w+l

>I(m,5) =w +wT +3-wd+3-w+3 - w
> ...

cannot decrease for ever, hence it must eventually stabilize at the value I'(m,n) =0
for some unimaginably huge value of n. For that n also G(m,n) = 0.

As shown by L. Kirby and J. Paris in 1982, Goodstein’s Theorem cannot be proved
just by means of the Peano Arithmetic alone.

5.8.2 Kirby-Paris Theorem. In PA it is provable that Goodstein’s Theorem im-
plies the consistency statement Cons(PA). As a consequence, if PA is consistent then
Goodstein’s Theorem is not provable in PA.

On the other hand, the existential statement (3y)(G(m,y) = 0) is provable in PA
for any fixed m € N. We know this though already for rather small values of m we not
only do not know the precise value of such a y = n but we even do not dispose of any
explicit proof of that statement in PA. We only know that the primitive step-by-step
computation must eventually produce the result. However, this computation will not
terminate within the existence not only of the mankind but of the entire universe. At
the same time, as an illustration of the w-incompleteness phenomenon mentioned in
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connection with Feferman’s construction, it should be realized that it is impossible to
extract out of those particular proofs-computations any general common idea which
would allow to convert them into a single proof of the universal-existential sentence
(v2)(3y)(G(x, ) = 0) in PA.

5.9 Philosophical Consequences. Themes for an Essay

There is a vast literature dealing with mathematical, philosophical, metaphysical
and others extra-mathematical consequences of Godel’s Incompleteness Theorems and
some related results. Let us confine to a brief list of some traditionally inferred
conclusions:

(1) Human knowledge is necessarily incomplete and we never can be sure that it is
free of contradictions.

(2) Human knowledge cannot be reduced to any formal system. By realizing the
incompleteness phenomena inherent for such systems we are capable to transcend
their limitations.

(3) Computers can compute and prove just within the scope of some formal system.
Humans, however, are able to seize and reveal some truths unprovable within any
formal system. It follows that human brain —in spite of the fact that with respect
to some parameters (as, e.g., the speed of computation) it is far behind the
computers — still possesses some capabilities making it superior to any computer.

It is extremely interesting to present some Godel’s ideas upon these issues here.
Godel namely went a step farther beyond (3). According to him, we all probably agree
that computers can compute and prove just within the scope of some formal system
given in advance. Similarly, the activity of human brain can in principle be simulated
by certain computer (though we do not dispose of such computers at present). How-
ever, human beings are capable of viewing or grasping even some truths unprovable
within any formal system. It follows that human mind or human intellect or human
spirit, however we call it, is endowed not only with some capabilities which make it
superior to any computer but also with some faculties which cannot be explained as
a mere manifestation of the activity and functioning of human brain.’

Try to ponder over the above quoted conclusions and opinions. To which degree
you agree or disagree with any of them and why? To which degree can the above
conclusions be justified by the incompleteness results we have been dealing with?
Discuss those points and try to make them more precise, finally arriving at some
formulations you can agree with. To which degree follow your conclusions from the
results of Godel, Rosser, Tarski, Church and Turing? Try to put these questions into
the context of the recent turbulent development in Artificial Intelligence.

5 Freely quoted according to Hao Wang [1996].



6 Substructures and Homomorphisms

This chapter marks the beginning of our discussion on model theory. From the exten-
sive material covered by this mathematical discipline, we will limit ourselves to a brief
introduction to its fundamental concepts and methods, which generalize several re-
sults that the reader has likely encountered in an algebra course. While model theory
can, in a certain sense, be viewed as the “metamathematics of algebra” , our approach
will —unlike the previous three chapters—be more mathematical than metamathe-
matical. Among other things, this will be reflected in the fact that the proofs of the
stated results will mostly be presented under the usual heading “proof”, instead of
the previously used term “demonstration”.

Throughout this chapter, we denote by L = (F, R, v) some fixed but otherwise ar-
bitrary first-order language, with constant symbols understood as nullary functional
symbols. Unless confusion might arise or explicitly stated otherwise, the term “struc-
ture”, or “first-order structure”, will refer to a structure of the language L, and the
term “theory”, or “first-order theory”, will refer to a theory in the language L. Sim-
ilarly, words such as “term” or “formula” will be understood as a term or formula of
the language L.

6.1 Substructures

Let A = (A;...), B=(B;...) be two first-order structures. We say that B is a
substructure of A, denoted B C A, if B C A and for any n-ary functional symbol
f € F and relational symbol r € R, and for all by,...,b, € B, we have:

fB(by, ... by) = fA(b1, ..., bn)

(bi,...,bn) €75 & (by,...,b,) €77
In other words, f8 = fA|B" and v = r4 N B". Specifically, for a constant symbol
f € F, this means that fZ = fA. We also say that A is an extension of B, denoted
A D B.
The “substructure relationship” is clearly transitive, meaning that for any struc-
tures A, B, C, we have:
ACBABCC = ACC.

The underlying set B of the substructure B C A must be closed under all operations
in the structure A, i.e., for any n-ary functional symbol f € F and all by,...,b, € B,
we have fA(by,...,b,) € B. Specifically, f* € B for every constant symbol f € F.

Conversely, any nonempty subset M C A of the domain of A which is closed
under all operations of 4 uniquely determines a substructure M = (M; ...) of A

117
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with carrier M. The operations and relations in M are then defined in the only
possible way:

M=t
rM =AM

for every n-ary functional or relational symbol f € F, r € R. We express these
equalities by saying that the operations and relations of M are inherited from A. This
observation provides a certain flexibility in terminology: depending on the context,
the term substructure of A may refer either to the structure M satisfying M C A,
or to a nonempty subset M C A that is closed under the operations of A (where
the corresponding structure M = (M; ...) then inherits its operations and relations

from A).

6.1.1 Example. Vector spaces over a given field F' can be viewed as structures
(V; Fu {+}) in a first-order language with the binary addition operation 4+, unary
scalar multiplication operations f € F', and no relational symbols (see Example 4.3.3).
In this case, the substructures of the vector space (V; Fu {+}) are precisely its linear
subspaces.

6.1.2 Exercise. Let A, B be first-order structures with A C B, and let t(z1,...,z,)
be a term, and ¢(x1,...,2,) an atomic formula. Prove that, for all b,...,b, € B,
we have:

t4(by,...,b,) € B
B':@(bl,,bn) -~ Ah(p(bl,,bn)

Remark. A reader with some knowledge of graph theory should realize that the
concept of a substructure corresponds to the notion of an induced subgraph of a given
graph G = (V; E), rather than to the concept of its arbitrary subgraph.

The properties of substructures exhibit a certain sensitivity to the language. The
following exercise illustrates what we mean by this.

6.1.3 Exercise. We have already mentioned three possible definitions of groups as
structures: (G; -), (G; -, e), and (G; - €, *1) in languages of varying richness.

(a) Find several examples of groups G = (G; ), and G = (G, -,e), along with
their substructures that are not themselves groups. Based on this, realize that in
both of these languages, a substructure of a group does not necessarily have to be its
subgroup.

(b) Prove that every substructure of a group G = (G; - €, _1) is itself a group. In
this case, it can rightfully be called a subgroup of the given group.

In connection with substructures of groups that are not subgroups, a general ques-
tion arises: Which properties of a given structure, expressed by first-order formulas,
are preserved in its substructures or in its extensions? Certain classes of such formulas
can be described relatively easily.
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A formula ¢ is called open if it contains no quantifiers. A formula ¢ is called
universal if it has the form (Va1,...,2,)Y, where 9 is an open formula. Similarly,
a formula ¢ is called existential if it has the form (Jz1,...,2,)Y, where ¢ is an
open formula. Clearly, the negation of a universal (existential) formula is logically
equivalent to an existential (universal) formula.

6.1.4 Proposition. Let A, B be first-order structures with B C A.
(a) If o(x1,...,2,) is an open formula, then for all by, ..., b, € B, we have:

BE@b,....,by) & AEp(bi,...,b,)

(b) If ¢(x1,...,x,) is a universal formula, then for all by,...,b, € B, we have:
AE p(by,...,b,) = BFE@(b,...,b,)

(¢c) If p(x1,...,2y,) is an existential formula, then for all by, ... b, € B, we have:
BE o(bi,...,b,) = AF @(by,...,b,)

Proof. (a) The statement can be easily proven by induction on complexity with
respect to the logical connectives — and (for example) A. For an atomic formula ¢,
it suffices to refer to Exercise 6.1.2. The inductive steps for = and A are left to the
reader.

(b) A universal formula ¢ has the form (Vy1,...,ym)0(x1,.. ., Tn,Y1,...,Ym) for
some open formula 1. The condition A F ¢(b1,...,b,) means that

Vay,...,am € A)(.A|= 1/)(b1,...,b",a1,...,am))
Since B C A, it follows that
Vai,...,am € B)(Ah1/)(61,...,bn,al,...,am))

The required conclusion follows from (a).
(c) can be proven analogously to (b) or derived from (b) using the fact that every
existential formula is logically equivalent to the negation of a universal formula.

6.1.5 Corollary. Let A, B be first-order structures such that B C A.
(a) If ¢ is a closed universal formula, then from A F ¢ it follows that B E .
(b) If ¢ is a closed existential formula, then from B FE ¢ it follows that A E .

In other words, universal properties are preserved under substructures, and exis-
tential properties are preserved under extensions. Conversely, this implies that prop-
erties that are not preserved under substructures (extensions) cannot be expressed
by universal (existential) formulas. In the following exercise, we demonstrate some
applications of this observation.
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6.1.6 Exercise. (a) Using a formula in a language where the only specific symbol is
the binary operation -, express the condition for the existence of a neutral element for
this operation. Prove that this condition cannot be expressed by either a universal
or an existential formula in this language.

(b) Using a formula in a language where the only specific symbols are the binary
operation - and the constant symbol e, express the condition that e is the neutral
element of this operation using a universal formula. Prove that this condition cannot
be expressed by an existential formula.

(c) In the same language as in (b) (and assuming that e serves as the neutral
element of the operation -), express the condition for the existence of an inverse
element for any element under this operation. Prove that this condition cannot be
expressed by either a universal or an existential formula in this language.

(d) Independently find additional examples of properties that cannot be expressed
by universal or existential formulas in a given language.

6.1.7 Exercise. Consider the field of all real numbers as the structure (R; +,-,0,1).

(a) Find examples of substructures of this structure that are rings but not fields.
Also, find examples of its substructures that are not even rings.

(b) What is the smallest subfield of the field (R; +,-,0,1)?7 What is its smallest
subfield containing all integers? What is the smallest subfield of (R; +,-,0,1) that
contains the number v/2, the number /5, or the number 7?7

(¢c) What is the smallest possible substructure of the field (R; +,-,0,1)? Is it a
field (or a ring)?

In this context, natural questions arise as to whether all properties that are pre-
served under substructures (extensions) can be expressed using universal (existential)
formulas. A priori, it cannot be ruled out that some properties expressed by formulas
of other syntactic forms might also be preserved in this way. We reveal in advance
that the answer to both of these questions is affirmative, but we will have to wait a
little longer for the proofs of these results.

6.2 Homomorphisms

A homomorphism from a structure A = (A;...) to a structure B = (B; ...) is a
mapping h: A — B such that for any n-ary functional symbol f € F or relational
symbol r € R and all ay,...,a, € A, the following conditions hold:

h(fA(a,. . an)) = fP(A(ar), ... A(an))

(a1,...,an) € = (W(ar),..., h(a,)) € r®

In particular, for a constant symbol f € F, this means that h( fA) = fB. The fact
that the mapping h: A — B is a homomorphism from A to B is denoted symbol-
ically as h: A — B or h: (4;...) — (B;...). Simply put, homomorphisms are
mappings between structures that preserve their fundamental operations (including
nullary ones) and relations.



6.2 HOMOMORPHISMS 121

6.2.1 Exercise. Let h: A — B be a homomorphism, ¢(z1,...,2,) be a term, and
o(z1,...,2,) be an atomic formula. Then for all aq,...,a, € A, the following holds:

h(tA(a1,...,a,)) =t5(h(ar),. .., h(an))
AEp(ar,...,a,) = BFo(h(ar),...,h(ay,))

Prove this.

The reader has likely encountered homomorphisms of groups or rings before. Like-
wise, linear mappings between vector spaces over a given field F are, in essence,
nothing other than homomorphisms between structures of the form (V; Fu {+}),
where + is the binary operation of addition and the unary operations correspond to
scalar multiplication by elements f € F.

It is worth noting that, unlike substructures, homomorphisms between groups ex-
hibit a significant degree of independence from the language. The explanation of this
fact will occur later in this section.

6.2.2 Exercise. Let (G; ~7e,’1) and (H; -,e,*l) be groups, and let h: G — H be
an arbitrary mapping. Prove that the following conditions are equivalent:

(i) h is a homomorphism (G; - e, _1) — (H; ~,e,_1);

(ii) h is a homomorphism (G -, e) — (H; -, €);

(iii) h is a homomorphism (G; -) — (H; -).

The composition of homomorphisms is again a homomorphism. Furthermore, ho-
momorphisms preserve substructures of the given structures “in both directions”. We
leave the simple proofs of these facts as exercises for the reader.

6.2.3 Proposition. Let A, B, and C be first-order structures, and let h: A — B and
g: B — C be homomorphisms. Then the composed mapping go h: A — C is also a
homomorphism.

6.2.4 Proposition. Let A and B be first-order structures, and let h: A — B be a
homomorphism.
(a) If M C A is a substructure of A, then the set

h[M] = {h(a): a € M} C B

is a substructure of B.
(b) If N C B is a substructure of B, and the set

h'[N]={ac A: h(a) e N} C A
is nonempty, then h~'[N] is a substructure of A.

In short, the homomorphic image of a substructure is a substructure, and the
homomorphic preimage of a substructure, as long as it is nonempty, is also a sub-
structure. Note that if the language L contains at least one constant symbol, the
condition h~1[N] # () is automatically satisfied for every substructure N of B.
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We say that a structure B is a homomorphic image of a structure A if there exists
a surjective homomorphism h : A — B. We are interested in determining which
properties are preserved under homomorphic images. A formula ¢ is called positive
if it is built from atomic formulas using only the logical connectives A, V, and the
quantifiers V, 3.

6.2.5 Proposition. Let A and B be first-order structures, and let h: A — B be
a surjective homomorphism. Then for any positive formula ¢(x1,...,2,) and all
ai,...,a, € A, we have

AEp(ar,...,a,) = BE@(h(al),...,h(a,))

Proof. We proceed by induction on the complexity of the formula. For an atomic
formula ¢, it suffices to refer to Exercise 6.2.1. The inductive steps for both logical
connectives and quantifiers will be performed simultaneously. Let * denote any of the
logical connectives A, V, and let Q denote any of the quantifiers V, 3 (both in the
language L and in natural language).

Assume that the implication to be proven holds for each of the formulas
o(x1,...,2y) and Y(x1,...,x,), and choose arbitrary elements aq,...,a, € A. Then
the condition

AE (px)(ay,...,an)

is equivalent to
AEp(ar,...,a,) * AEY(a1,...,a,)

By the induction hypothesis, we obtain
BE ¢(h(ar),...,h(an)) * BE¢(h(ar),...,h(ay))

which is equivalent to
BE (px9)(h(ar),...,h(a,))
Now assume that the implication holds for a formula ¢(z,z1,...,z,) and choose
arbitrary elements aq,...,a, € A. Then the condition

A = (Qx)(ﬁ(l’,al, .. -,(ln)

is equivalent to
(Qa € A)(.A Eo(a,ai,.. .,an))
By the induction hypothesis, this implies

(Qae A) (B E o(h(a),h(ar),..., h(an)))
From this, we obtain
(Qb e B)(B E (b, h(ar),..., h(an)))

For the existential quantifier 3, the result is clear: we can simply take b = h(a). An
analogous conclusion for the universal quantifier V follows from the surjectivity of h,
as every b € B has the form b = h(a) for some a € A. In both cases, we conclude

BE (Qz)p(z, h(ar),...,h(ay))
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6.2.6 Corollary. Let the structure B be a homomorphic image of the structure A.
Then, for any closed positive formula ¢, from AF ¢ it follows that B F .

In other words, positive properties are preserved under homomorphic images.

A closer examination of the proof of Proposition 6.2.5 reveals that the surjectivity
condition of the mapping ¢ was used only in the inductive step for the universal
quantifier. This simultaneously proves the following result.

6.2.7 Proposition. Let A, B be first-order structures and let h: A — B be a
homomorphism. Then, for any existential positive formula ¢(x1,...,z,) and all
ai,...,a, € A, it holds that

AEp(ar,...,a,) = BEo(h(ar),...,h(ay,))

6.2.8 Exercise. Consider groups as structures (G; -) in a language with a single
binary operation symbol -. Express by formulas of this language the property e(u):
“4 is the identity element of the operation -7, and the relation ¢(xz, y): “y is the inverse
element of x with respect to the operation -”. Verify that both e(u) and ¢(z,y) are
(universal) positive formulas. Is this fact alone sufficient to explain the implication
(iii) = (i) from Exercise 6.2.2? Under what circumstances is it sufficient, and under
what circumstances is it not? Think about how we can “rescue the situation” in this
case.

From Proposition 6.2.5, it follows, among other things, that properties that are not
preserved under homomorphic images cannot be expressed using positive formulas.

6.2.9 Exercise. A ring (A4; +,-,0) is called an integral domain if it satisfies the

condition
Vz,y)(z-y=0= (x=0V y=0))

Prove that the property of rings “being an integral domain” cannot be expressed by
a positive formula. Find other examples of properties of first-order structures that
cannot be expressed by positive formulas.

Later on, we will see that, conversely, first-order properties that are preserved
under homomorphic images can be expressed using positive formulas.

A formula ¢ is called negative if it is the negation of a positive formula. The
proofs of the following results on the backward transfer of negative properties from
homomorphic images to the original structure are left as an exercise for the reader.

6.2.10 Proposition. Let A, B be first-order structures, and let h: A — B be a sur-
jective homomorphism. Then, for any negative formula ¢(x1,. .., x,) and all elements
ai,...,a, € A, it holds that

BE o(h(a1),...,h(an)) = AEp(al,...,ay)

If ¢ is additionally closed, then from B & ¢ it follows that A E .



124 6 SUBSTRUCTURES AND HOMOMORPHISMS

6.2.11 Proposition. Let A, BB be first-order structures, and let h: A — B be a ho-
momorphism. Then, for any universal negative formula ¢(x1, ..., x,) and all elements
ai,...,a, € A it holds that

BE o(h(ay),...,h(a,)) = AE p(ai,...,ay)

If ¢ is additionally closed, then from B E ¢ it follows that A FE .

6.3 Isomorphisms and Embeddings

A homomorphism h: A — B is called an isomorphism if h is a bijective mapping
and its inverse mapping h~': B — A is also a homomorphism h~': B — A. The
fact that h is an isomorphism from the structure A to the structure B is denoted by
h: A5 B. We say that structures the A and B are isomorphic if there exists at least
one isomorphism h: A = B; we write A = B.

The following observation is evident.

6.3.1 Proposition. Let A, B, and C be first-order structures.

(a) The identity mapping Ida: A — A is an isomorphism Ids: A = A.

(b) If h: A= B is an isomorphism, then its inverse mapping h=': B — A is also an
isomorphism.

(c) If both h: A= B and g: B = C are isomorphisms, then the composite mapping
goh: A5 C is also an isomorphism.

Consequently, for any structures A, B, and C, the following holds:

A=A
A2B = B2 A
A2BAB=C = A=C

That is, the isomorphism relation is reflexive, symmetric, and transitive; in other
words, it is an equivalence relation on the class of all structures of the language L.

The reader should note that while every isomorphism is a bijective homomorphism,
not every bijective homomorphism is an isomorphism.

6.3.2 Example. Let the language L contain a single specific symbol — a unary pred-
icate symbol P. Further, let A; = (A; Py) and Ay = (4; P») be two structures of the
language L with the same underlying set A, where the subsets Py, P, C A serve as
interpretations of the symbol P in the structures A; and As, respectively. Then,
the identity mapping Id4: A — A is certainly bijective. It is a homomorphism
Ids: A; — Aj precisely when P; C P, and it is an isomorphism Id4: A; = Aj
precisely when P, = P,. Thus, if P, is a proper subset of P, then Ids: A; — As
serves as an example of a bijective homomorphism that is not an isomorphism.

Under certain additional conditions, however, every bijective homomorphism is
indeed an isomorphism.
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6.3.3 Proposition. Assume that the language L contains no relational symbols.
Then every bijective homomorphism h: A — B between structures of the language L
is an isomorphism.

Proof. Let h: A — B? be a bijective homomorphism. It suffices to verify that for
every n-ary operation symbol f € F' and all by,...,b, € B, the following holds:

R (B (b, b)) = fA(RTHby), .. T (b))

Let a; = h=1(b;) for 1 < i < n; then b; = h(a;). Since h is a homomorphism and
h™Yo h =1Idy, we have:

WP b)) = W (P, b))
= ("t o) (fMar,- -, an))
= AT (br),. .. h (b))

6.3.4 Corollary. Let A and B be first-order structures. Then a mapping h: A — B
is an isomorphism h: A = B if and only if it is bijective and for every n-ary functional
symbol f € F or relational symbol r € R, and all a1, ...,a, € A, the following hold:

h(fA(ar,... a,)) = fB(h(ar),. .., han))

(a1,...,ap) € e (h(ay), ..., h(ay)) € 7B

A mapping h: A — B between the underlying sets of structures A and B is called
an embedding of structure A into structure B if h is an isomorphism of A onto the
substructure h[A] of B. In such a case, we write h: A — B.

A fundamental and simplest example of an embedding is the embedding of a sub-
structure B C A into the structure A via the identity mapping Idg: B — A. It is
also evident that the composition of embeddings h: A < B and g: B < C is itself an
embedding go h: A — C.

From the preceding Corollary 6.3.4, the following more detailed characterization
of embeddings immediately follows.

6.3.5 Proposition. Let A and B be first-order structures. Then a mapping h: A— B
is an embedding h: A < B if and only if it is injective and for every n-ary functional
symbol f € F or relational symbol r € R, and all ay,...,a, € A, the following hold:

h(fA(ar, ... a,)) = fE(hlar), ..., h(ay))
(a1,...,a,) €14 & (h(ar),...,h(an)) €7P
It follows that if the language L contains no relational symbols, then every injective

homomorphism is an embedding.
Moreover, note that the very property of injectivity of the mapping h

a=0b < h(a)=h(b)

for all a,b € A, is nothing but the condition of preserving the equality relation in
both directions. While the implication = is trivially satisfied “always”, injectivity is
given precisely by the reverse implication <.
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6.3.6 Exercise. Let A, B be first-order structures. Prove that a mapping h: A — B
is an embedding h: A < B if and only if for any atomic formula p(z1,...,z,) and
all ay,...,a, € A, the following holds:

AEp(ar,...,a,) & BE@(h(a),...,h(a,))

6.3.7 Proposition. Let (A; <) and (B; <) be partially ordered sets. If (A; <) is
linearly ordered, then every homomorphism h: (A; <) — (B; <) is also an embedding.
If h is additionally surjective, then it is an isomorphism h: (4; <) = (B; <).

Proof. Let h: (A; <) — (B; <) be a homomorphism. First, we show that h is
injective. Choose two distinct elements a,b € A. Since the ordering < on set A is
linear, either @ < b or b < a holds. In the first case, we have h(a) < h(b); in the
second, h(b) < h(a). In either case, h(a) # h(b). Next, we need to verify that for any
a,b € A, the condition h(a) < h(b) implies a < b. Since h is injective, h(a) < h(b)
implies @ # b. Then either ¢ < b or b < a. However, the latter would lead to
h(b) < h(a), contradicting the assumption h(a) < h(b). From this, the second part of
the proposition immediately follows.

6.3.8 Exercise. Formulate and prove an analogous statement for homomorphisms
and embeddings of partially ordered sets with the partial order <.

6.3.9 Example. Let (A; <) be the set A = {0,1} x {0,1} equipped with the com-
ponentwise partial order, defined as:

(a1,01) < (a2,b2) © a1 <as A by <b

for all (a1,b1),(az,bs) € A. Let (N; <) be the set of all natural numbers with the
usual (linear) order. Define a mapping h: A — N by:

h(a,b) =2a+b

for (a,b) € A (see the figure).

(LD) h

Y

b1
(4: <) 0.1 1

(0.0)
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At first glance, it is evident that h: (4; <) — (N; <) is an injective homomorphism
but not an embedding. In (N; <), we have h(0,1) =1 < 2 = h(1,0), yet in (4; <),
(0,1) < (1,0) does not hold — the elements (0,1) and (1,0) are namely incomparable.

An immediate generalization of Corollary 6.1.5 is as follows.

6.3.10 Proposition. Let A and B be first-order structures, and let h: A — B be an
embedding.
(a) If ¢ is a closed universal formula, then from B F ¢ it follows that AFE .

(b) If ¢ is a closed existential formula, then from A FE ¢ it follows that B E .

6.3.11 Exercise. (a) Formulate (and if you feel the need, prove) an analogous gen-
eralization of Proposition 6.1.4.
(b) Which first-order properties are preserved under isomorphisms?

6.4 Elementary Equivalence and Elementary Substructures

Isomorphic L-structures A and B can be considered “much the same,” and if neces-
sary, identified using the corresponding isomorphism. However, for many purposes in
model theory, isomorphism is “too strict” an equivalence. From a certain perspective,
structures A and B can be regarded as “the same” if they share the same properties
expressible in the language L.

We say that structures A and B are elementarily equivalent, denoted A = B, if for
every closed formula ¢:

AF¢p & BEy

It is immediately clear that elementary equivalence is reflexive, symmetric, and tran-
sitive, i.e., for any structures A, B, C:

A=B
A=B = B=A
A=BAB=C = A=C

making it an equivalence relation on the class of all structures of language L. It is
also evident that isomorphic structures are elementarily equivalent, i.e.,

A=B = A=B

for any A and B. We will soon see examples of elementarily equivalent structures
that are not isomorphic (e.g., due to differing cardinalities).

6.4.1 Exercise. Let at least one of the structures A, B be finite. Then A = B
if and only if A = B. Prove this. (Hint: First, prove that if, for example, the
structure A is finite and |A| = n, then A = B implies |B| = n. Then try to prove the
implication A = B = A = B under the additional assumption that the language L
has only finitely many specific symbols. Finally, try to reduce the general case to this
situation.)
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The theory of the structure A is defined as the set
Th(A) = {¢ € Form(L): ¢ is closed and A F ¢}

of all closed formulas in the language L that hold in the structure A. Clearly, for any
structures A, B, we have

A=B & Th(A) = Th(B)

Since for any structure A, the theory Th(.A) is complete, the following three conditions
are equivalent for any structures A, B:

Th(A) = Th(B), Th(A) C Th(B), Th(A) 2 Th(B)

This means that the logical equivalence in the definition of elementary equivalence
can be replaced by either of the implications =, <.

6.4.2 Proposition. For any structures A, B, the following conditions are equiva-
lent:
(i) A=B
(ii) For every closed formula ¢, we have AF ¢ = BE ¢
(iii) For every closed formula ¢, we have BE ¢ = AF .

The same conclusion can be reached based on the fact that the system of all closed
formulas in the language L is closed under negation. Think about how.

An even closer relation of similarity between structures is the notion of an ele-
mentary substructure. We say that a structure A is an elementary substructure of a
structure B, or equivalently, that the structure B is an elementary extension of the
structure A, if A C B and for every formula ¢(z1,...,z,) in the language L and all
ai,...,a, € A, we have

AE p(ar,...,a,) & BFEg(a,...,a,)

This fact is denoted symbolically as A < B or B > A. Consider that from the
condition A < B, it follows that 4 C B, meaning every elementary substructure of B
is indeed a substructure of it.

6.4.3 Exercise. Verify that for any structures A, B, C, we have

A< A
A<B=A=B
A<BAB<C = A<C
A<XCANB<CANACB = A<B

Since the system of all L-formulas is also closed under negation, logical equivalence
can be replaced by any of the implications =, <= in the definition of an elementary
substructure.
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6.4.4 Proposition. For any structures A, B such that A C B, the following condi-
tions are equivalent:

(i) A<B
(ii) For any L-formula ¢(z1,...,x,) and all a,...,a, € A, we have:
AE p(ar,...,an) = BEp(ar,...,an)
(iii) For any L-formula ¢(z1,...,2,) and all a1, ...,a, € A, we have:

BE p(al,...,a,) = AEp(ar,...,a,)

6.4.5 Example. The field Q = (Q; +-,0, 1) of all rational numbers is a substructure
of the field R = (R;+,-,0,1) of all real numbers. However, these fields are not
elementarily equivalent. Since v/2 does not exist in Q, we have:

OF-(Fz)(xz-z=1+4+1)

whereas V2 € R, thus
RE@@z)(z-z=1+1)

Therefore, @ < R cannot hold. Analogously, try to explain why the field R is
not elementarily equivalent to the field (C; +-,0,1) of all complex numbers, hence
it cannot be its elementary substructure. On the other hand, as proved by Alfred
Tarski in 1930, the field (A;+,-,0,1) of all algebraic numbers (i.e., solutions of poly-
nomial equations with rational coefficients) is an elementary substructure of the field
(C; 4+-,0,1). Similarly, the field (ANR; +,-,0,1) of all real algebraic numbers is an
elementary substructure of R. Moreover, since the sets R and C have the cardinality
of the continuum, while the sets AN R and A are countable, the elementarily equiv-
alent fields (A; +,-,0,1) = (C; +,-,0,1), as well as (ANR; +,-,0,1) = (R; +,-,0,1)
cannot be isomorphic.

The following result, known as the Tarski or also the Tarski-Vaught criterion,
essentially localizes the question of whether A < B exclusively within the “larger” of
the two structures B D A.

6.4.6 Theorem. Let A, B be arbitrary structures, with A C 3. Then the following
conditions are equivalent:
(i) A<B
(ii) For any formula ¢(z,z1,...,z,) and all a,...,a, € A, we have:
(3be B)(BE ¢(b,a1,...,a,)) = (Fac A)(BE ¢(a,ay,...,a,))

Condition (ii) means: if the problem “find z such that B F ¢(z,aq,...,a,)” with
parameters aq, ..., a, € A has at least one solution b € B, then this problem also has
some solution a € A.

Proof.  (i)=(ii): Let A < B. Assume that ¢(x,z1,...,2,) is a formula and
ai,...,a, € Aaresuch that (HbEB)(thp(b, A1y -y an)), ie, BE(Jz)p(z,a1,...,a,).
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Then also A E (3z)¢(z, a1, ..., a,), ie., (3a € A)(AFE p(a,aq,...,ay,)). For such a,
we also have B F ¢(a,a1,...,a,), hence (Ja € A)(BE ¢(a,ay,...,ay)).

(ii) = (i): Assume (ii). By induction on complexity, we prove that for every formula
o(x1,...,xpy) and all aq,...,a, € A,

AE p(ar,...,an) & BEp(a,...,a)

For atomic ¢, this holds because A C B. The inductive steps for logical connectives —
and A are straightforward and left to the reader. Thus, we focus only on the inductive
step for the existential quantifier 3. Assume that the above equivalence holds for the

formula p(z,z1,...,2,) and all a,ay,...,a, € A. We need to verify its validity for
the formula (3z)p(z, z1,...,2,) and all a1,...,a, € A. The following conditions are
equivalent:

AE 3z)p(z,a1,...,a,) (1)
(HaeA)(Ahcp(a,al,...,an)) (2)
(Fac A)(BF ¢(a,a1,...,a,)) (3)
(3be B)(BE ¢(b,ay,...,an)) (4)

BE (3z)p(z,a1,...,a,) (5)

To explain: the equivalences (1) < (2) and (4) < (5) follow from the definition of
formula satisfaction in structures, the equivalence (2) < (3) follows from the induction
hypothesis, the implication (3) = (4) is trivial, while the reverse implication (4) = (3)
is precisely condition (ii) of the theorem being proved.

A mapping h: A — B between the underlying sets of structures A, B is called an
elementary embedding of A into B if h is an isomorphism of A onto the elementary
substructure h[A] of B. In this case, we write h: A —> B.

The simplest example of an elementary embedding is the embedding of an elemen-
tary substructure B < A into A via the identity mapping Idg: B — A. It is also

clear that the composition of elementary embeddings h: A = B,g: B =5 C is itself
an elementary embedding go h: A =c.

6.4.7 Exercise. (a) Formulate and prove generalizations of Proposition 6.4.4 and
Theorem 6.4.6 from elementary substructures to elementary embeddings.

(b) Let A, B, C be structures, h: A — B an embedding, and g: B —» C an
elementary embedding such that the composition goh: A =, Cis also an elementary

embedding. Prove that then h: A =4 B is also an elementary embedding. Which
previously stated fact about elementary substructures does this statement generalize?

6.5 Diagrams of Structures

In this section, we briefly introduce the diagram method, based on expanding the
basic language with new constant symbols. This method allows us to construct new
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structures with prescribed properties from given ones, reflecting certain properties of
the original structures as models of appropriate theories in an extended language.

Let L be a first-order language, A = (A; ...) an L-structure, and M C A. The
language obtained from L by extending it with a set of new constants {c,: a € M}
(where the constant symbols ¢, corresponding to different elements of M are distinct)
will be denoted by Ljs. The structure of the language Ljs, which arises from the
structure A by keeping the interpretations of the original symbols of L unchanged
and interpreting each new constant c, as the element a € M, is denoted as

An = (A, a)aem

The most important special case for us is when M = A; then As = (A, a)qeca. Simi-
larly, if B is another L-structure and h: A — B is some mapping, then (B, h(a))aeA
denotes the structure of the language L 4, in which the individual constants ¢, are in-
terpreted as elements h(a) (and the original symbols of the language L are interpreted
the same way as in B).

For brevity’s sake, negations of atomic formulas will be referred to as negatomic
ones. The atomic diagram, or simply the diagram of the L-structure A, is defined as
the set of formulas

D(A) ={¢ € Form(L4): ¢ is a closed atomic or negatomic formula and A E ¢}.

Note that every closed formula ¢ of the language L4 has the form ¢ (cq,, ..., cq, ) for
some formula v (z1,...,x,) of the original language L. In this case, the condition
AaE @, ie.,

AaE (e, -y ca,)

is equivalent to the condition
AEY(a,... an)

so we may freely switch between the second-to-last and last notations.
The positive atomic diagram of the L-structure A is defined as the set of formulas

DT(A) = {¢ € Form(L,) : ¢ is a closed atomic formula and A4 F ¢}.

Clearly, we have D" (A) C D(A), where the “smaller” of the two diagrams, D" (A),
consists of all atomic formulas from the “larger” diagram D(A). It thus seems that
the “larger” diagram D(.A) contains more information than the “smaller” one, DT (A).
However, this is not the case—in fact, both diagrams contain the same amount of
information. The “larger” diagram D(A) can be reconstructed from the “smaller”
one DT(A) in a straightforward way. From each pair of formulas ¢(ay,...,a,),
—p(ay,...,a,), where @©(x1,...,x,) is an atomic L-formula and ay,...,a, € A,
precisely one belongs to the diagram D(A). If p(ai,...,a,) € DT(A), then it is
olat,...,an); if p(a1,...,a,) ¢ DT (A), then it is ~¢(a1,...,a,). The reasons for
introducing the seemingly redundant and unnecessarily large diagram D(.A) will be-
come apparent shortly.
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6.5.1 Example. Let A = (A; -) be a finite set with a single binary operation -. Then
the diagrams D(A), DT (A) contain the same information as the Cayley multiplication
table of the structure A. An element ¢ € A appears in the row of element a € A and
the column of element b € A in this table precisely when a - b = ¢ holds in A.

The following statements express some of the already known relationships between
structures in terms of the newly introduced diagrams.

6.5.2 Proposition. Let A, B be structures of the language L.

(a) Let AC B. Then A C B if and only if B4 = D(A).

(b) Let h: A — B. Then h is an embedding of A into B if and only if
(B, h(a))aeA FD(A).

6.5.3 Proposition. Let A, B be structures of the language L, and let h: A — B.
Then h is a homomorphism from A to B if and only if (B, h(a))aeA EDV(A).

From the couple of the above propositions, we can clearly see the different roles
played by the diagrams D(.A) and DT (A).

If we do not restrict ourselves only to atomic formulas, we can introduce another
type of diagrams. The elementary or complete diagram of an L-structure A is the set

of formulas
Th(Ax) = {p € Form(L4): ¢ is closed and A4 E ¢}

The following proposition is a direct analogue of Proposition 6.5.2.

6.5.4 Proposition. Let A, B be structures of the language L.

(a) Let AC B. Then A < B if and only if BaF Th(Ajy).

(b) Let h: A — B. Then h is an elementary embedding of A into B if and only if
(B,h(a)), 4 F Th(Aa).

For completeness, let us also recall that the theory of the structure A in the lan-
guage L
Th(A) = {¢ € Form(L): ¢ is closed and A F ¢}

can be considered as a type of diagram that expresses the relationship of elementary
equivalence.

6.5.5 Proposition. Let A, B be structures of the language L. Then A = B if and
only if B E Th(A).

6.5.6 Exercise. Using an extension of the language L by appropriate constant sym-
bols, simplify the formulation of condition (ii) in the Tarski-Vaught criterion for ele-
mentary substructures and simplify the notation of some parts of its proof.
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6.6 The Lowenheim-Skolem-Tarski Theorems

In this section, we will prove two results —the Lowenheim-Skolem-Tarski “down-
ward” and “upward” theorems— which guarantee the existence of many elementary
substructures or elementary extensions of a given infinite structure A with a pre-
scribed cardinality, satisfying certain minimal constraints formulated in terms of the
cardinality of the language L and of the structure A itself. We will make use of ex-
tensions of the original language by appropriate constant symbols, and in the proof
of the second theorem, we will also encounter a simple application of the diagram
method (namely, the elementary diagram Th(.44) of the structure A).
Recall that the cardinality of the language L = (F, R,v) is the cardinal number

IL]| = | Form(L)| = max(|F|, | R],Ro)

6.6.1 Lowenheim-Skolem-Tarski Downward Theorem. Let A be a structure of
infinite cardinality |A| = a > |L| and 8 be a cardinal number such that |L|| < 8 < a.
Then, for every subset M C A of cardinality |M| < (3, there exists an elementary
substructure B < A of A with cardinality |B| = 8 such that M C B.

Proof. Without loss of generality, we may assume that |[M| = /8 (otherwise, we can
replace M with a set M’ of power 8 such that M C M’ C A). We construct a
sequence By C By C ... C B, C By4+1 C ... of subsets of A recursively. Initially, set
By = M. Next, for each given n, construct B,,;1 by ensuring that for every formula
(z) of the language Lp, , subject to

AE (Fz)p(x)

we choose precisely one element b € A, such that A E ¢(b), and add it to B,. It is
easy to verify that the set
B=|]J B,

neN

has cardinality § and forms a substructure of A. According to the construction,
the substructure B = (B;...) of A is elementary by the Tarski-Vaught criterion
(Theorem 6.4.6). (Fill in the missing steps and consider where we have used the
axiom of choice.)

In the case where ||L|| < 8 < a, the elementary substructure B of the structure
A, whose existence is guaranteed by the theorem just proved, is necessarily proper.
However, in the case where ||L|| < 8 = a, we cannot guarantee this solely based on
this theorem.

6.6.2 Lowenheim-Skolem-Tarski Upward Theorem. Let A be an L-structure
of infinite cardinality |A| = «, and 8 be a cardinal number such that

[Lall = max(e, [ L]]) < B

Then there exists an elementary extension B > A of the structure A with cardinality

|B| = 8.
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Proof. Let us form the language L4 and extend it by adding a new set of constant
symbols D of cardinality |D| = 8. We denote this extension of the language L (and
consequently of La) as L™ = (L4)p. Next, we define U as the theory in the language
L™ that requires all constants d € D to denote distinct elements. In other words, the
axioms of the theory U consist precisely of all inequalities d; # ds for any two distinct
constant symbols dy,ds € D. Since |D| = 8, every model of the theory U will have a
cardinality of at least 8. We claim that the theory Th(A4) U U in the language L™
has some model M. By the compactness theorem, it suffices to verify that for any
finite subtheory Uy C U, the theory Th(A4) U Uy has a model. Let Dy be the set
of all constant symbols d € D appearing in the axioms of Uy. Clearly, Dy is a finite
set. We take the structure A4 of the language L4 and extend it to a structure AT
of the language L™ by keeping the interpretations of the symbols of L4 unchanged,
interpreting the constants d € Dy as distinct elements of the set A (which is always
possible since A is infinite), and interpreting the remaining constants d € D ~\ Dg as
arbitrary elements of A. It is obvious that AT E Th(A4) U Up.

Now, let M be a structure of the language LT such that M F Th(A4) UU. Since
M E U, it follows that |M| > . Because M F Th(A4), the reduct M~ = ML
to the language L (obtained by omitting the interpretations of the constants ¢, and
d € D) is, by Theorem 6.5.4, an elementary extension of an isomorphic copy of the
structure A. By Léwenheim-Skolem-Tarski Downward Theorem 6.6.1, M~ contains
an elementary substructure B < M~ of cardinality |B| = 8 such that A C B. Then,
we have A < M~, B < M~, and A C B, which implies A < B

In the case where o < 3, the structure B is again a proper elementary extension of
A. However, in the case where a = 3, we cannot guarantee this solely based on the
theorem just proved. The question of the existence of proper elementary substructures
B < A or proper elementary extensions B = A of a given structure A with the same
cardinality |B| = |A| = « is a more subtle matter. Under certain circumstances, the
existence of a proper elementary extension B of A of the same cardinality |B| = |A]
can be proved using the ultrapower construction (see Exercise 8.4.4).
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In this chapter, we will examine in more detail the relationship between the syntactic
form of axioms of first order theories and the preservation of these theories under fun-
damental constructions with their models. Specifically, we will characterize theories
that are preserved under transition to substructures or extensions, theories that are
preserved under unions of chains, and theories preserved under homomorphic images,
as theories that can be axiomatized using axioms of certain well-described syntactic
form.

We begin our considerations with “an inventory” of the most important tools we
will use. These include Godel’s Completeness Theorem 4.8.6, the Compactness The-
orem 4.9.1 along with its Corollary 4.9.2, as well as Lemma 4.7.1 on constants. We
will become familiar with additional tools in the next section.

7.1 Lemma on Mutual Compatibility and
the Axiomatization Lemma

Let T and S be consistent theories in a first-order language L. We say that T and S
are compatible if the theory T'U S is consistent. Otherwise, we say that T and S are
incompatible.

7.1.1 Lemma on Mutual Compatibility. Let T and S be theories in a first-order
language L. Then T and S are incompatible if and only if there exist axioms
o1(1,. ., k), .-, on(x1,...,xp) of the theory S such that

T+ (Hxl,...,xk)(—'m(xl,...,xk)\/...\/—|on(x1,...7xk))
Demonstration. If such formulas o1, ..., o, exist, then
S+ (V:cl,...,xk)(al(xl,...,xk) AL, /\an(xl,...,:ck))

as a result of which T'U S is clearly inconsistent.

Conversely, if T'U .S is inconsistent, then some theory of the form T'U Sy is already
inconsistent, where Sy = {o1,...,0,} is a finite subtheory of the theory S. Let
x1,...,Z, be all variables that are free in some of the formulas ¢;. Then the theory

TU{(Va1,...,z5)(01(z1,. . zk) Ao Aog(, ..., 2p)) }
is also inconsistent, which means that the negation of this formula is provable in T

We denote the class of all models of the theory T in the language L as Mod(T).
We say that a set of formulas I" in the language L is an axiom set of the theory T, if

135



136 7 PRESERVATION THEOREMS

Mod(T) = Mod(I), i.e., for every L-structure A, it holds that A E T if and only if
AET.

7.1.2 Axiomatization Lemma. Let T be a consistent theory in the language L,
and let A be a set of sentences in the language L closed under finite disjunctions.
The following conditions are equivalent:

(i) T has an axiom set I’ C A.

(ii) For any structures A, B in the language L, the following holds:
AET ANBETh(A)NA = BET

The set A should be viewed as a set of formulas (logically equivalent to formulas)
of a certain syntactic form, e.g., universal formulas, existential formulas, positive
formulas, etc.

Proof. (i)=(ii): Assume that 7 has an axiom set I" C A. Further, assume that
AET and BE Th(A) N A. Then clearly BF I', thus BE T.

(ii) = (i): Assume that (ii) holds. Denote by I' the set of all sentences ¢ in the
language L such that ¢ € A and T+ . We show that I" is an axiom set for T. It
suffices to prove the inclusion Mod(I") € Mod(T) (the reverse inclusion is namely
obvious—why?). Let B € Mod(I"). In order to prove that B € Mod(T), i.e., BE T,
using condition (ii), we need to find a structure A F T such that B F Th(A) N A.
This last condition can be equivalently rewritten as A FE X', where

S ={-6:5€A BE-§}

(think about why). We need to ensure that the theory T'U X has some model A. For
this, it suffices to prove that it is consistent. Otherwise, according to Lemma 7.1.1
on mutual compatibility, there would exist some formulas 41, ...,d, € A such that
=01,...,70, € Yand T F §; V...V J,. Denote by § the last formula. Clearly, § € A,
hence also 0 € I', and since B FE I, it follows that B F §. However, this contradicts
the fact that B E —dy, ..., BE —=d,, thus B E 4.

7.2 Universal Theories and Substructures

We say that a theory T is preserved under substructures if any substructure of a
model of the theory T is also a model of T.

7.2.1 Theorem. Let T be a consistent theory. Then the following conditions are
equivalent:
(i) T has a set of universal axioms.

(ii) T is preserved under substructures.

Proof. 'We focus only on the non-trivial implication (ii) = (i). Assume that (ii) holds.
Denote by I19 the set of all sentences in the language L that are equivalent to universal
formulas. Clearly, I1{ is closed under finite disjunctions. Using the Axiomatization
Lemma 7.1.2, we will prove that T has an axiom set I" C II9. Assume that A F T
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and B F Th(A) N11Y. We will show that, under these conditions, there exists an
L-structure C such that A = C and B C C. This will complete the proof, because then
C E T and —since T is preserved under substructures—also B E T

In other words, we need to find a structure (C,b)pep in the language Lp that is
a model of the theory Th(.A) U D(B). It suffices to verify that this theory in the
language Lp is consistent. Otherwise, for some n > 1, there would exist formulas
61 (Z;), ooy 0, (5) € D(B) such that 0;(x1,...,z,) are atomic or negatomic formulas

in the language L, b = (b1,...,by) € B*, and
Th(A) F —0;(b) V...V =6, (D)

However, Th(A) is a theory in the language L, in which the constants by,. .., by do
not appear. Therefore, according to Lemma 4.7.1 on constants,

Th(A) F (V&) (=01 (Z) V...V =0,(F))

where & = (x1,...,2x). However, the last formula is a universal sentence satisfied in
A. Thus, it is also satisfied in B. This contradicts the fact that

BEGD)(61(T)A... AL (F))

Abbreviated “vector” notation such as & = (z1,...,x5) or b = (by,...,by) for
ordered k-tuples of variables or elements of sets will be used further without special
notice.

7.3 Existential Theories and Superstructures

We say that a theory T is preserved under extensions if any extension of a model of
the theory T is also a model of T.

7.3.1 Theorem. Let T be a consistent theory. Then the following conditions are
equivalent:

(i) T has a set of existential axioms.

(ii) T is preserved under extensions.

Proof.  Again, we focus only on the nontrivial implication (ii) = (i). Suppose (ii)
holds. Denote by Y9 as the set of all sentences of the language L equivalent to
existential formulas. Clearly, ¥ is closed under finite disjunctions. Using the Ax-
iomatization Lemma 7.1.2, we prove that T has a set of axioms I' C 9. to this end
assume that A F T as well as B £ Th(A) N %Y. Tt follows that A F Th(B) N I1Y
(consider why). However, this is the same situation as in the proof of the previous
theorem, only with the roles of the structures A and B swapped. Therefore, there
exists a structure C such that A C C and B = C. Then—since T is preserved under
extensions —we have that C F T, and consequently B E T.
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7.4 Universal-Existential Theories and Chain Unions

Recall that an ordered set (I; <) is a set I # () with a binary relation < satisfying the
following conditions:

Vz)(z <x)
Vaz,y)lz<y ANy<z = z=y)
Va,y,2)(xa<y ANy<z = z<z)

(Va,y)z<y V y<a)

By a chain of structures over an ordered set (I; <), we mean a system of structures
(A;)ier of some first-order language L such that for any elements i < j of the set I,
the structure A; is a substructure of the structure A;, ie., A; C A;. By the union
of the chain (A;)i € I, we mean the L-structure A = J,c; A; with the underlying
set A = |J,c; Ai, and with the operation and relation symbols of the language L
interpreted as follows:

For any n-ary operation symbol f or relation symbol r of the language L and elements
ai,...,a, € A, we define

fAay,. .. an) = fA(ay,. .. a,)
(a1,...,an) €7 < (ay,...,a,) € 774
where 7 is any element of the set I such that aq,...,a, € A;.

(Realize that there always exists at least one such element ¢ € I, and if 4,5 € I are
two such elements, then the interpretations of f* and r* do not depend on which
one we use in their definition.)

It is evident that if the set (I; <) has a greatest element m (specifically, if I is finite),
then (J,c; Ai = Am, so the above construction can yield something new only if (; <)
is infinite and has no greatest element. A typical example of chains of structures is
the chain (A )nen over the set (N, <) of all natural numbers with the usual ordering.
Such chains can also be written in the form

AOQAlg g-Ang-An—i-l g

or alternatively in the form (A, )n<ew-
A simple proof of the following statement is left as an exercise for the reader.

7.4.1 Proposition. Let (A;)i € I be a chain of structures over an ordered set (I; <).
Then for every j € I, we have A; C J,c; Ai, i.e., the union of the chain of structures
is an extension of each of the structures in this chain. Moreover, if a structure B is an
extension of each of the structures in the chain (A;)i € I, then |J;c; A; C B; in other
words, the union of the chain (A;);cr is the smallest structure that is an extension of
each of the structures A;.

A chain (A;)ier of structures over an ordered set (I;<) is called an elementary
chain if for all pairs of elements ¢ < j from the set I, we have A; < A;, ie., A; is an
elementary substructure of the structure A;.



7.4 UNIVERSAL-EXISTENTIAL THEORIES AND CHAIN UNIONS 139

7.4.2 Theorem. Let (A;)i € I be an elementary chain of structures over an ordered
set (I;<). Then for every j € I, we have A; < U,c;Ai, ie., the union of an
elementary chain of structures is an elementary extension of each of the structures in
the chain.

Proof. Let A =J;c; Ai. We need to show that A; < A for each structure A; in the
elementary chain (A;);er. This follows from the following statement:
For all L-formulas p(x1, ..., z,), foreach j €I, and for any elements ay, ..., a, € A;,

A Eplar,...,an) & AFEp(ar,...,a,)

The proof is by induction on the complexity of the formula ¢. If ¢ is atomic, the
condition is trivially satisfied because A; C A. Similarly, the validity of the given
condition for formulas ¢ and v obviously implies its validity for the negation —¢ and
for the conjunction ¢ A ¢ (details are left to the reader). So let’s assume that the
condition holds for the formula p(zg, z1, ..., z,) and verify its validity for the formula
(Fzo)e(zo,21,...,2n). Let j € I and aq,...,a, € Aj. Then the following conditions
are equivalent:

(1) AE 3xg)p(z0, a1, ... ,a,)

(2) there exists ag € A such that AF ¢(ag,ai,...,a,)

(3) there exist k € I and ag € Ay, such that k > j and A F p(ag,ay,...,a,)
(Consider why we can assume without loss of generality that k > j in (3).) For such
k € I and ag € Ay, the condition A F ¢(ag,as,...,a,), by the induction hypothesis,
is equivalent to the condition Ay E ¢(ag,a1,...,a,), so condition (3) is successively
equivalent to the conditions:

(4) there exist k € I and ag € Ay such that k > j and Ag E v(ag,a1,...,a,)

(5) there exists k € I such that k > j and Ay F (3zo)e(x0, a1, .., an)

Finally, since for j < k we have A; < Ay, condition (5) is equivalent to condition

(6) A] = (Elx())(p(.]fo, Ay, ... 7a”rb)
which is what we wanted to arrive at.

7.4.3 Proposition. Let (A;);er be a chain of structures over an ordered set (I; <),
and o(x1,...,Zm,Y1,---,Yn) be an open formula. Assume that

Ai B (VE)(3T)e(Z,7)

holds in each structure A;. Then it also holds that

U A= (8)39)e(E.9)

iel
Proof.  Under the given assumption, choose arbitrary elements a, ..., a, € U;c; 4.
We need to prove the existence of some elements by,...,b, € Uiel A; such that

UAl = @(6,5)

icl
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Given the conditions, there exists some j € I such that a4,...,a, € A;. Since

Aj E(VE)ET)e(,7)

-,

@, b). Since A; C |
4 (a) we have

there exist elements by,...,b, € A; such that A; F ¢ A; and

 contains no quantifiers, according to Proposition 6.

UAi E <p(6_i7g)

el

icl

(
1

We say that a theory T is preserved under chain unions if the union of an arbitrary
chain of models of the theory T is also a model of T'. Preservation of a theory under
chain unions over the ordered set (N; <) can be defined in a similar way.

A formula of the form (Va1,...,2m)3y1,- .-, yn)p, where ¢ is an open formula, is
called a universal-existential formula.

7.4.4 Theorem. Let T be a consistent theory. Then the following conditions are
equivalent:
(i) T has a set of universal-existential axioms.
(ii) T is preserved under chain unions.
(iii) T is preserved under chain unions over (N; <).

Proof. The validity of the implication (i) = (ii) follows from the previous theorem,
and the implication (ii) = (iii) is trivial. It is thus sufficient to focus on the implication
(iii) = (i).

Assume (iii) holds. Let IIS denote the set of all sentences in the language L
equivalent to universal-existential formulas. It is clear that II9 is closed under finite
disjunctions. Using the Axiomatization Lemma 7.1.2, we will prove that T has a set
of axioms I' C I19. Let AF T and assume

(0) BFE Th(A)NTIS

Under these conditions, we will construct two sequences of structures (A;)n<w,
(Bp)n<w of the language L such that Ay = A, By = B, and, for every n, A, = A,11,
hence also A,, = A, as well as B,, < B,+1, where the two sequences together form an
alternating interleaved chain

ByCA CBCAC...CB, C A1 CBu1 C.

Let C denote the union of these structures. Then we have both

c= U A=UB&B.

1<n<w n<w

Since the theory T is preserved under unions of chains over (N;<), and all A,, are
models of T, it follows that C F T. Since the chain (B,,)n<. is elementary, we get
B < C, thus ultimately B E T. Therefore, by the Axiomatization Lemma 7.1.2, we
conclude that T" has a set of universal-existential axioms.
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Now, we show that under the condition (0), the following statement holds:
(1) There exist structures A’, B’ such that A=A, B< B, and BC A CB.

Since every universal formula is also a universal-existential one, from condition (0)
it follows that B F Th(A) N1IY. As we saw in the proof of Theorem 7.2.1, under
this condition, the theory Th(A) U D(B) is consistent and there exists a structure

s = (A, b)pep, which is a model of the theory Th(A) UD(B) in the language Lp.
Therefore, A’ = A and B C A'.

The structure B’ will be obtained as a restriction of the structure (B8',b, a)pe B ac 4’
in the language Lp a4 = (Lp)as, which we require to be a model of the theory
Th(Bp) UD(A’) in this language. It is sufficient to verify that this theory is consis-
tent. Otherwise, by Lemma 7.1.1 on mutual compatibility, there would exist formulas
01(@),...,0,(d) € D(A’), where 6;(z1,...,z) are atomic or negatomic formulas of
the language L and @ = (a1, .. .,ax) € (A’)*, such that

Th(Bg) F =01(@) V...V —60n(a)

Since Th(Bg) is a theory in the language Lp, in which the constants aq,...,ax do
not appear, by Lemma 4.7.1 on constants, it follows that

Th(Bp) F (VZ)(=01(Z) V...V =0,(Z))

Since this is a formula in the language L, it means that it must be satisfied in B.
However, at the same time,

AE @) OF)A. .. A0L(T))

and since A’ = A, this last formula must also hold in A. Since it is existential, and
thus even more so a universal-existential formula, it follows from assumption (0) that
it is also satisfied in B. This contradiction proves (1).

Finally, note that for the structures obtained in this way, condition (0) still holds,
i.e., B' E Th(A’) N 113, so the entire construction can be iterated. Thus, we consec-
utively obtain structures A; = A’, By = B’ from the structures Ag = A, By = B, as
well as structures A, 11 = A}, Bp+1 = B), from structures A,,, B,, for n > 1.

7.4.5 Exercise. Let us consider groups as structures (G;-) with a single binary
operation. Then, group theory is defined by two axioms: the associative law

Vo,y,2)(z-(y-2)=(x-y) 2))

and the axiom expressing the existence of an identity element as well as inverse
elements
Gu)Va)(z-u=z=u-z A Fy)(z-y=u=y- )

which can be replaced by the axiom
(V2)By)(V2) (2 (x-y) =2=(y ) 2)

Neither of these two axioms is universal-existential. Therefore, it may be surpris-
ing that group theory (in this language) is preserved under chain unions. In other
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words, if ((Gi; -))Z.e[ is a chain of groups over some ordered set (I; <), then its union
(Uz’e 1 Gis ) is a group, again. Prove this independently.
From Theorem 7.4.4, it follows that group theory must have a set of universal-

-existential axioms in the language with a single binary operation symbol -. Find
such an axiomatization of group theory.

7.5 Algebraic Closure of a Field

The axioms of field theory as structures (F'; +,-,0,1) in a language with two binary
operations + and - and two constants 0 and 1 are certainly well known to our readers,
so we will not explicitly list them here. It suffices to recall that, in addition to
the universal axioms (identities) expressing the commutative and associative laws for
both operations, the roles of 0 and 1 as neutral elements of these operations, and the
distributive law, there are also two universal-existential axioms

Vz)3y)(xa+y=0) and (Vz)Fy)(za#0 =z -y=1)

ensuring the existence of inverse elements for both operations. From the theorem
on the preservation of theories under chain unions, it follows that field theory is
also preserved under chain unions, meaning that the union of any chain of fields
((FZ-; +,-,0, 1))1_61 over an ordered set (I; <) is again a field <Ui€[ F;; +,-,0, 1).

Chain unions are widely used in field theory. Their most important application is
the construction of the algebraic closure of a field, which we will now introduce.

From now on, as is customary, we will denote the field (F'; +,-,0,1) mostly just
by F, that is, the same as its underlying set. We say that a field K is an algebraic
extension of a field F' if F is a subfield of K and every element of K is algebraic over
F, i.e., it is a root of some polynomial p(z) with coefficients from the field F'.

The reader should remember from algebra lectures several results about algebraic
extensions of fields, which we briefly summarize here. If p(z) € F[z] is an irreducible
polynomial of degree > 2 over the field F', then the quotient ring F[z]/(p(x)) of the
polynomial ring F[x] modulo the principal ideal (p(z)) generated by the polynomial
p(z) is again a field, which is moreover an extension of the field F. In this field, the
polynomial p(z) has a root (namely, the residue class = + (p(z))), so it is no longer
irreducible. Such extensions of the field F' are called its simple extensions. Clearly,
every simple extension of the field F' is algebraic. It is also easy to see that for any
fields F', H, and K, the following holds: if H is an algebraic extension of the field F'
and K is an algebraic extension of the field H, then K is an algebraic extension of
the field F.

A simple proof of the following auxiliary statement is left as an exercise for the
reader.

7.5.1 Lema. Let (F});cr be a chain of fields over an ordered set (I; <), each of which
is an algebraic extension of the field F. Then the union of this chain |J,_,; F; is also
an algebraic extension of the field F.

icl
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We say that a field K is algebraically closed if every polynomial p € K|[z] of degree
> 2 has at least one root in K. It is easy to see that a field K is algebraically closed if
and only if the only monic irreducible polynomials of degree > 1 over K are the linear
polynomials of the form x —a, where a € K. It follows further that in an algebraically
closed field, every polynomial of degree n > 1 has exactly n roots, counting each root
with its multiplicity. A field K is called an algebraic closure of the field F' if K is an
algebraically closed field that is an algebraic extension of the field F'.

7.5.2 Theorem. For every field, its algebraic closure exists.

Furthermore, the algebraic closure of any field is uniquely determined up to iso-
morphism. However, the proof of this result is beyond the scope of our course.

Proof. Let F be an arbitrary field. First, we construct an algebraic extension F of
the field F' in which every irreducible polynomial p(z) € F[x] of degree > 2 has a root.
In other words, there does not exist a polynomial p(z) € F[z] of degree > 2 that is
irreducible over the field F'. Let (Pa(2))a<, be an arbitrary enumeration of the set of
all monic irreducible polynomials of degree > 2 in the ring F'[x] by ordinal numbers
less than some ordinal number p. By transfinite recursion over ordinals o < p, we
construct a transfinite sequence (F,)q<, of extensions of the field F' such that

Fy=F
Fulz]/(ps(x)), where 8 < p is the first-ordinal such that the polynomial

Foy1= pa(z) is irreducible over the field F,
F,, if no such ordinal § exists
Fy = U F,
a<A

for any ordinal @ < p, or for any limit ordinal A < p. Clearly, for any o < 8 < p,
the field Fj3 is an extension of the field Fi, s0 (Fu)a<, is @ chain of fields over the
ordered set ({a: a < p}; <).

By transfinite induction, we prove that each of the fields F|, is an algebraic exten-
sion of the field F. For a = 0, this is obvious. Suppose that a < p is an arbitrary
ordinal and assume that F, is an algebraic extension of the field F. Then Fj, is
either a simple (hence algebraic) extension F,[z]/(ps(z)) of the field F,, or it is the
field F, itself. In both cases, it is an algebraic extension of the field F. Finally, let
A < p be a limit ordinal. Suppose that all fields F,,, for a < A, are algebraic exten-
sions of the field F. Then F), as the union of the chain (F,)a<x, is also an algebraic
extension of F' by Lemma 7.5.1. R

Now, we set F' = J,., Fa. Then the field F, as the union of the chain (Fu)a<,
of algebraic extensions of the field F', is itself an algebraic extension of the field F'.
Clearly, every irreducible polynomial of degree > 2 over the field /' has a root in some
field F,, and thus also in the field F.

Using the described construction, we now construct another chain (F("))neN of
algebraic extensions of the field F' over the ordered set N of all natural numbers such
that

—

FO—-p and F®H) = p0)
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for n € N. Then the union of this chain F = Unen (") is again an algebraic extension
of the field F'. We will prove that it is also an algebraically closed field. To do this,
it suffices to verify that there do not exist monic irreducible polynomials p(z) € F[z]
of degree > 2. Suppose that

ple) = 2* + ara* L+ g+ ay € Fla]

is a monic irreducible polynomial of degree k > 2. Then there exists n € N such
that the field F(™ contains all its coefficients a1, . .., ax, so p(z) € F("™[z] is a monic
irreducible polynomial over the field F(). However, then p(x) has a root in the field

Ftl) — 1*:(:), and therefore also in the field F. But this means that — contrary
to our initial assumption— the polynomial p(z) is not irreducible over the field F'.
Thus, we have proved that the field F' is an algebraic closure of the field F'.

7.6 Positive Theories and Homomorphic Images

We say that a theory T is preserved under homomorphic images if each homomorphic
image of any model of the theory T is also a model of T

7.6.1 Theorem. Let T be a consistent theory. Then the following conditions are
equivalent:
(i) T has a set of positive axioms.

(ii) T is preserved under homomorphic images.

Proof. Again, we focus only on the implication (ii) = (i). Assume that (ii) holds.
For any extension L¢ of the language L with new constants, let Pos(L¢) and Neg(L¢)
denote the sets of all sentences of Lo equivalent to positive and negative formulas,
respectively. Clearly, Pos(L) is closed under finite disjunctions. Using Axiomatization
Lemma 7.1.2, we prove that T has a set of axioms I' C Pos(L). To his end, take any
A E T and assume that

(0) BE Th(A) NPos(L).
Under this assumption, we prove the following statements:

(1) There exists an elementary extension B’ > B and a homomorphism h: A— B’
such that (B, h(a))aca E Th(Ax) NPos(La).

(2) There exists an elementary extension A’ > A and a mapping g: B — A’ such
that (B, b)bEB E Th(.A/,g(b))beB n POS(LB).

(1): Consider the theory Th(Bg)U(Th(A4)NPos(L4)) in the language L4 p. From as-
sumption (0), we can conclude that it is consistent, using Lemma 7.1.1 on mutual com-
patibility and Lemma 4.7.1 on constants in a routine way. Let (B, h(a),b)qcaer be
its model, where B’ is a structure of the language L. Then B < B’, and (B', h(a))aca E
Th(A4) NPos(L4), which, among other things, implies that h: A — B is a homo-
morphism.

(2): Similarly, based on assumption (0), we can prove the consistency of the theory
Th(A4) U (Th(Bg) NNeg(Lg)) in the language L4 g, using the same tools as above.
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Let (A’,a,g(b))aca,pep be its model, where A’ is a structure of the language L. Then
A < A, and for the mapping g: B — A’ we have (A’, g(b))rep F Th(Bg) N Neg(Lp),
hence (B,b)pes F Th(A', g(b))ses NPos(Lp).

By alternating iterations of constructions (1) and (2), we now construct two se-
quences (A, )n<w; (Bn)n<w of L-structures, together with mappings g,,: B, — Apt+1
and homomorphisms h,,1: A,11 — Bry1 as follows:

0° Set .Ao = .A, BQ = B.
1° Construct A, +1 and g,: B, — A,41 such that

(B, b)ven, F Th(Ani1,9n(b))een, NPos(Lp, )

according to (2).
2° Construct (B1,b)pep, and a homomorphism hy: (A1, g0(b))sen, — (B1,b)pen,
such that

(817 b? h’l(a))bEBg,aeAl ': Th(Al, go(b), a)beBo,a€A1 N POS(LBo,Al)

following (1).

3° Finally, for n > 1, construct (Bp+1, hn(a),d)aca, bep, along with a homomor-
phism Ant1: (Ani1, a5 9n(b))aca, beB, = (Bni1, hn(a),b)aca, bep, such that

(BTL+17 hn(a)v b’ h7l+1(a’/))aeAnybeBn7a/eAn+l
F Th(AnJrh a, gﬂ(b)a a/)aeAn,bEBn,a’EAnJrl N POS(LAMBV,L,A"H)

from the structures (A,11,a, gn(b))aca, veB,, Bn, hn(a),b)eca, vep, of the lan-
guage L4, p,, following (1).

One should realize that namely meeting the stated conditions, which are assumptions
of type (0), ensures that the next step can be performed anytime, so that the con-
struction can continue indefinitely. As a result, we obtain two interlinked elementary
chains:

AO = Al = = An = An+1—>"'
90 hl hn In hn—i—l
By B, B, Bupr — ...

Step 3° ensures that for n > 1 and any a € A, we have h,(a) = hn41(a), ie.,
hyn = hpy1 [ Ap. Similarly, steps 2° and 3° ensure that for every n and any b € B,
the following holds: h,11(gn (b)) = b, therefore also B,, C hyy1(An+1). We form the

unions of elementary chains

Aw: UAn Bw: UBn

n<w n<w
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and set

he, = U iy

1<n<w

Then A < A, B < B, and h,: A, — B, is clearly a surjective homomorphism.
From the condition A E T, it follows that A, F T, and since T is preserved under
homomorphic images, also B, F T, thus finally B F T. According to Axiomatization
Lemma 7.1.2, T has a set of positive axioms.

7.6.2 Exercise. Under the assumption (0) from the proof of Theorem 7.6.1, prove
that both the theories

Th(Bg) U (Th(A4) NPos(L4)) and Th(A4)U (Th(Bg)N Neg(Ly))

in the language L4 g, appearing in (1) and (2), respectively, are consistent.



8 Ultraproducts and Axiomatic Classes

Our final chapter is devoted to model constructions based on the construction of the
direct product. We will discuss the so-called filtered products and filtered powers. The
most important case among them represent the so-called ultraproducts, which preserve
all first-order properties, and wultrapowers, which allow us to construct elementary
extensions of structures in a uniform and elegant way. We will also demonstrate some
applications of these constructions, but the reader should be aware that this is only a
small sample, and the possibilities of applications of ultraproducts are far from being
exhausted by them.

8.1 Direct Product of Structures

The direct or Cartesian product of a system of sets (A;);cs is defined as the set
[I;c; Ai of all functions a: I — J,o; As such that a(i) € A; for each i € I. The
statement that for any system (4;);cr of non-empty sets A;, their Cartesian product
is also non-empty is equivalent to the axiom of choice, whose validity we will assume
automatically.

8.1.1 Example. Consider that for a finite system (A;)"_;, there is a natural bijection
between “two versions” of the Cartesian product A; x ... x A, and [[_, A;, and
explicitly describe it.

The direct or Cartesian power of a set A with an index set I is defined as the direct

product
AT =TJ4
iel

where A; = A for each ¢ € I. If T # (), we have at our disposal the injective diagonal
mapping A — A, assigning to each element a € A the constant function @ € A?, i.e.,
a(i) =aforalliel.

Let (A;)ics be a system of first-order structures over the set I. The direct product
of these structures is defined as the structure

A=]J4
_ iel
with the base set A = [];.; A;, where the operational and relational symbols are
interpreted component-wise, i.e., for any n-ary functional symbol f, or n-ary relational

symbol r of the language L and all ay,...,a, € A, we have
f"T(ozl7 o an)(i) = fA (i), ... an(i)) for each i € T
(1,...,0ap) € o (1 (3), ..., an(i)) € rAi for each i € T

147
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The above definitions naturally extend to arbitrary terms and atomic formulas. Ver-

ify for yourself that for any term ¢(x1,...,x,) or atomic formula ¢(z1,...,z,) and
elements «aq, ..., a, € A, the following holds:
A, .. an)(i) = A (@1 (d), . . ., an(i)) for each i € I

AEp(ar,...,0n) & A Eolar(i),. .. an(i)) for each i € T

For completeness, we also define the direct product of an empty system of structures
(corresponding to the case I = () as a single-element structure with operational
symbols interpreted in the only possible way and with full relations.

If the index set I is clear from the context, we write simply [] A; or [].A;, respec-
tively.

The direct or Cartesian power of a structure A with an index set I is defined as
the direct product

- H A;

icl
where A; = A for each i € I. Clearly, if I # (), then the diagonal mapping A — Al
is an embedding of the structure A into its direct power A’, ie., A — A,

For any formula ¢(z1,...,z,) of the language L, we define its boolean truth value
on elements o, ..., a, € [[ A; as the set

(o, ...,an)] ={i € I: A E p(a1(i),...,an(i))}

Clearly, [p(ai,...,a,)] C I, so the boolean truth value [p(a1,...,a,)] is an element
of the Boolean algebra P(I) of all subsets of I.

Note that in the direct power, the boolean truth value on constant functions takes
only two values.

8.1.2 Proposition. Let I be a non-empty set, A be a structure, and p(z1,...,Ty)
be a formula. Then for all ai,...,a, € A, we have

_ _ I if AE¢(ay,...,an)
[(,0(041,...,0%)] = .
0 if A ¢(a,...,an)
The boolean truth value of formulas preserves the natural relationship between
logical connectives and boolean operations in the Boolean algebra P(I). We leave the

simple proof of the following proposition as an exercise for the reader.

8.1.3 Proposition. Let (A;);er be a system of first-order structures and

o(x1,...,xp), Y(21,...,2,) be formulas. Then for any aq,...,a, € [[ A;, we have
[_‘30(017“-’ )} =TI~ [ (ala"'van)]
[(¢A¢)(a17"'7 )}:[ (041,..., )]ﬁ[w(al,...,an)}
[(eV)ar,...,on)] = [plar,...,on)]U[d(ar, ... an)]
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For the boolean truth value of existentially quantified formulas, the so-called mazx-
imality principle holds.

8.1.4 Proposition. Let (A;);er be a system of structures and p(x,x1,...,z,) be a
formula. Then for any ay,...,q, € [] A;, there exists ag € [[ A; such that for each
a € [] A;, we have
[(,0(04, Ayeeey an)] - [(P(a()v Apyeeey an)] = [(EI x)@(xa ap, ... 7an)]
Proof. Let us denote
J=[C2)p(z,a1,...,0n)] ={i € I: (Fa; € A;)(Ai E lai, a1(),...,an(i))}
Using the axiom of choice, we define a function «g € [] 4; as follows:
@) a; where a; € A; satisfies p(a;, a1(i), ..., (7)), ifi e J
ap(i) =
0 a; where a; is any element of the set Ai, ifigJ
Verification that the function «q satisfies all required conditions is left to the reader.

The following two propositions show that the boolean truth value satisfies condi-
tions analogous to the axioms of equality. Using these axioms, they can indeed be
easily verified —try it on your own.

8.1.5 Proposition. Let (A;);c; be a system of structures. Then for any «, 3,y €
I1A:, we have

[a=a]=1
la=p]=[8=q]
[a=BIN[B=1]Cla=1]
8.1.6 Proposition. Let (A;);cr be a system of structures, t(z1,...,x,) be a term,

and o(x1,...,2,) be a formula of the language L. Then for any «y,B1,...,0n, Bn €
[T A:, we have

lar = BN N om = Ba] € [tlon, ... an) =B, .-, Bn)]
[r = B1] N [an = Bul N plar, ... an)] C[p(B1,..., Bn)]
Note that for an atomic formula ¢(z1,. .. ,:cn), we have
[TAE@,...,an) & [plon,...;0n)] =T
iel

which means that for it to hold, it must “hold everywhere”. On the other hand, for
its negation —p(z1,...,z,), we have

H'Ai E-plar,...,an) & [Folag,...,a,)] #0

i€l
so for it to hold, it suffices that it holds in at least one of the structures A;. In other
words, our definition of the structure [ ].4; has a consequence that, for the satisfaction
of formulas of different syntactic form, different criteria for their boolean truth value
hold. In the next three sections, we will attempt to navigate this situation further.
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8.2 Filters and Ultrafilters

A filter on the set I is any nonempty set D C P(I) such that, for any X, Y C I, we
have

(a) f X€eDand X CY, then Y € D;

(b) if XY € D, then X NY € D.

Instead of the term filter, the term dual ideal is sometimes used. Conditions (a) and
(b) imply that for any X,Y C I, we have X N'Y € D if and only if both X € D and
Y eD.

Clearly, every filter contains the entire set I, and the single-element set D = {I}
is the smallest of all filters on I —we call it the t¢rivial filter. The system P(I) of all
subsets of I also forms a filter on I — we call it the improper filter. All other filters are
called proper filters. Clearly, a filter D is proper if and only if §) ¢ D. Some authors
understand the term filter to mean only a proper filter. More generally, for any set
JCI,

Py ={XCI:JCX)}

is a filter on I; such filters are called principal filters. Clearly, on a finite set I, all
filters are principal. However, on an infinite set, there also exist non-principal filters,
i.e., those that do not have a smallest element. An example is the so-called Fréchet

filter
F(I)={X CI:set I~ X is finite}

Clearly, for a finite set I, the Fréchet filter F(I) coincides with the improper filter
P(I). However, if I is infinite, then F(I) is a nontrivial, proper, and non-principal
filter on 1.

Additional examples of filters are provided by topological and measurable spaces.
In a topological space (X, T), for each point z € X, the set

V(@)={VCX: BUeT)(zeUCV)}

forms a filter on X, called the neighborhood filter of the point x.

Similarly, if X = (X, B, i) is a measurable space with a complete measure p (i.e.,
for any A,B C X, from A C B € B and u(B) = 0, it follows that A € B and
1(A) = 0), then the set

ZX)={ACX: p(X VA =0}

forms a filter on X.

Intuitively, we view a (proper) filter D on a set I as a system of its subsets that
are, “large” in some sense, and thus the corresponding filter “captures” them. There
can be many criteria of “largeness” — each (proper) filter represents one of the pos-
sibilities. However, for such a criterion to be “reasonable” it must certainly satisfy
condition (a); condition (b) expresses an idealizing requirement that the complement
of a “large” set must be “small”, and the union of two “small” sets should be a “small”
set, again.
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A filter D on a set [ is called an wltrafilter if D is a proper filter and for any
set X C I, either X € D or I ~ X € D (for a proper filter, only one of these two
possibilities can occur). Clearly, for any element ¢ € I, the principal filter

'P{i}(I)Z{XQI:iEX}

is an ultrafilter on I. However, we are primarily interested in non-principal ultrafil-
ters — such ultrafilters can exist only on infinite sets. Clearly, they must be ultrafilters
that extend the Fréchet filter F(I).

Think independently about the fact that a filter D on a set I is an ultrafilter if
and only if it is a maximal proper filter on I. From the Axiom of Choice, more
precisely from its equivalent formulation in the form of Zorn’s Lemma or Hausdorff’s
maximality principle, the following result follows. A system of subsets S C P(I) of
the set I is called centered if for any finite number of sets X1,...,X,, € S, we have
Xin...nX, #0.

8.2.1 Proposition. Let S be any centered system of subsets of the set I. Then there
exists an ultrafilter £ on I such that S C £. In particular, for any proper filter D on
the set I, there exists an ultrafilter £ on I such that D C £.

8.3 Filtered Products

The basic idea behind of the filtered product construction consists in a certain relax-
ation of the requirements for the equality of functions in the direct product and of
their belonging to relations corresponding to relational symbols of the given language.
Functions from the direct product that are equal on a “large” subset of the index set
are identified, and to include an n-tuple of functions in the corresponding relation,
it suffices that the individual components of the elements of this n-tuple belong to
the respective relations in the individual factors for a “large” set of indices. A more
precise description of the entire construction follows.

Let (A;);cr be a system of sets and let D be a filter on the set I. For any functions
a, f €[] Ai, we define

a=pf & la=pleD

From the properties of the filter and boolean truth values, it immediately follows that
=p is an equivalence relation on the set [],.; A;. The quotient set [],.; A; / =p will

be denoted as

HAZ-/D or only HAZ-/D

iel
and called the filtered or reduced product of the system of sets (A;);er with respect to
the filter D. The equivalence class of a function a € [ A; is denoted aP. Clearly, the
assignement a — aP defines a canonical surjective mapping [Lic: Ai = T1ier Ai / D
from the direct product [] A; onto the filtered product [T 4;/D.

If (A;);er is a system of first-order structures, then the filtered or reduced product

of this system is defined as the structure

A/p=T]A:/D

icl

iel
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with the base set [[,c; As / D, where the specific symbols of the respective language
L are interpreted as follows:

fA/D(a?, . ,af) = fMaoa,...,a,)P
(a,....aD) € rP o r(og,...,an)] €D
for any n-ary functional symbol f or n-ary relational symbol r and all ay,...,«a, €

1TA:.

The properties of filters and boolean truth values ensure that these definitions are
correct, i.e., they do not depend on the individual representatives ay, of the equivalence
classes aP for k = 1,...,n. (Consider this independently.) The canonical mapping
1TA4: = T4 / D given by the assignment o — P is then a homomorphism from the
direct product [].A4; onto the reduced product [].A4;/D.

If J C I and D= P;(I) is a principal filter, then the assignment a +— « [ J, which
maps each function « € [[,.; 4; to its restriction « [ J € Hiej A;, has the property
that

iel
alJ=8]J & JCla=8] & a=pp

for any «, 3 € [[ A;. Thus, the assignment a” + o[ J defines a bijective mapping

[Lics Ai / D — [l;es Ai- The reader should independently verify that this is even an

isomorphism of the filtered product [[,.; A; / D onto the direct product [, ; A;. In

el ieJ

some special cases, we obtain

HAi/D & H’Ai for the trivial filter D = {I}

i€l iel
H-Ai/D = A for the principal ultrafilter D={X C I: j € X}
i€l

HAZ/D = HAZ for the improper filter D = P(I)

i€l =)

In any case, it is clear that reduced products can bring something new compared to
direct products only in the case of non-principal filters.

A filtered or reduced power of a structure A with an index set I under the filter D
on [ is defined as the filtered product

AI/ D= H A; / D
il
where A; = A for each i € I. The assignment a — @>, which maps each element
a € A to the equivalence class a> € Al / D of the constant function @ € A’, is called
the diagonal mapping of the set A into its filtered power A’ / D. From the properties of
filters and boolean truth values, the following observation immediately follows. The
proof is left to the reader.

8.3.1 Proposition. Let A be a structure and D be a proper filter on a nonempty
set I. Then the diagonal mapping A — AI/D is an embedding of the structure A
into its filtered power A’/D, ie., A — A'/D.
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8.3.2 Example. (a) The filtered power RY/F with respect to the Fréchet filter
F = F(N) consists of equivalence classes a” of all real sequences a: N — R, where
sequences «, (3 represent the same equivalence class if and only if they are equal
“almost everywhere”, i.e., everywhere except for elements n € J of some finite set
JCN.

(b) Let X = (X, B, 1) be a measurable space with a complete measure p, and let
Z = Z(X) be the filter on X consisting of all sets A C X whose complement has
measure 0. Then, the filtered power RX / Z consists of equivalence classes a® of all
real functions « : X — R, where functions «, § represent the same equivalence class
if and only if they are equal “almost everywhere”, i.e., everywhere except for elements
x € B of some set B € B of measure 0.

8.3.3 Exercise. (Frayne-Morel-Scott)
(a) Let K # 0, (Ir)rerx be a system of nonempty pairwise disjoint sets, and
I = UkeK Ij.. Further, let (A;);er be a system of nonempty sets. The mapping h
from the direct product J],.; 4; to the iterated direct product J],. K(Hle I A,») is
defined by
h(a)(k) = ally

for o € [[;c; Ai, k € K. Prove that h is a bijection. Assuming that (A;)es is a
system of structures of a first-order language L, prove that

w14 — I (T 4)
il keK Nicly

is an isomorphism of L-structures.
(b) Let &€ be a filter on the set K, and for each k € K, let Dy, be a filter on the set
I;.. Define
D={XCIl:{keK: XN, €Dy} €&}

Prove that D is a filter on the set I.
(c) Prove that D is an ultrafilter if and only if £ is an ultrafilter and

{k € K: Dy, je ultrafilter} € £

(d) Using the mapping h from (a), construct a natural bijection between the filtered
product [[,.; A; / D and the iterated filtered product

1(114/m)/

keK “ielg

icl

(e) Prove that the bijection described in (d) is an isomorphism of L-structures

[T4/p— H(HAi/Dk)/E

el keK “iely
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8.4 Ultraproducts

The wltraproduct of a system (A;);er of first-order structures is the reduced product

HAi/D

el

of this system with respect to some ultrafilter D on the set I. A reduced power A’ / D
of a structure A with respect to an ultrafilter D is called an ultrapower of A.

Since for the principal ultrafilter D = Py;y(I), we have [[A;/D = A;, we will
mainly focus on ultraproducts with respect to non-principal ultrafilters. Such ultra-
filters can only exist on infinite sets. Clearly, an ultrafilter D on an infinite set I is
nonprincipal if and only if it extends the Fréchet filter, i.e., F(I) C D.

The satisfaction of formulas in ultraproducts can be fully characterized in terms of
their boolean truth values.

8.4.1 Lo$’ Theorem. Let (A;);cr be a system of structures, and let D be an ultrafil-
ter on the set I. Then, for any formula ¢(z1,...,x,) and elements oy, . .., a, € [[ A,
we have

HAZ-/'DF p(al,....ap) & [p(a,...,an)] €D

iel

In other words, an n-tuple of elements o, ..., a2 € [] A; /D satisfies the formula ¢
in the ultraproduct [],.; 4;/D if and only if the boolean truth value [p(as, ..., o,)]
is “large” in the sense of the ultrafilter D, meaning that the n-tuple of functions
ag,...,an € [[A; satisfies the formula ¢ componentwise for a “large” subset of
indices 7 € I.

Proof. The proof can be carried out simply by induction on the complexity of the
formula ¢. If ¢ is atomic, then the validity of the stated equivalence follows from the
definition of operations and relations in filtered products. Assume, therefore, that
the given equivalence holds for the formulas ¢(z1,...,z,), ¥(x1,...,z,), and for any
elements aq,...,a, € [[A;. Using this assumption, we verify its validity for the
formulas —¢ and ¢ A .

Under these assumptions, for any ag,...,a, € [] A;, the following conditions are
equivalent:

H.Ai/DIZ—'ga(a?,...,af)
HAI'/D#?'@(Q?,...,QE)

[p(ar, ... an)] ¢ D
[Co(aL,...,an)] =1 N [p(ar,...,a,)] €D

Here, the equivalence of the conditions in the second and third lines is guaranteed
by the induction hypothesis, and the equivalence of the conditions in the third and
fourth lines follows from the properties of boolean truth values and ultrafilters.
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Similarly, for any aq,...,a, € [] Ai, the following conditions are equivalent:
[[A4/PF(rv)al,....ab)

HAi/Dl:go(a?,...,af) A HAi/DIZw(alp,...,aE)
[p(aty...,an)] €D A [Y(ay,...,a,)] €D
[(eAY)(ar,...,an)] = [p(ar,...,an)] N [(ag,...,an)] €D

Here, the equivalence of the conditions in the second and third lines is guaranteed
by the induction hypothesis, and the equivalence of the conditions in the third and
fourth lines follows from the properties of boolean truth values and arbitrary filters.

Further, assume that the given equivalence holds for the formula ¢(x,z1,...,2z,)
and any elements «, aq, ..., a, € [[ A;. Using this assumption, we verify its validity
for the formula (Fx)p(x,21,...,2,). Under these assumptions, for any aq,...,a, €

[T A:, the following conditions are equivalent:
[[4/PFGa)e(e.al,....aD)
(Ela e HAi) (HAZ-/D Eo(aP,aP,.. .,af))
(aa c HAi>([gp(a,a1,...,an)} € D)
(B2)p(z, a1, ...,an)] € D

Here, the equivalence of the conditions in the second and third lines is guaranteed
by the induction hypothesis, and the equivalence of the conditions in the third and
fourth lines follows from the maximum principle for boolean truth values and the
properties of arbitrary filters.

Note that the inductive steps for conjunction and existential quantification would
work for any filter D; the condition that D is an ultrafilter was needed only in the
inductive step for negation.

An immediate consequence of Los§’s theorem is the fact that the ultrapower of
models of any first-order theory is itself a model of that theory.

8.4.2 Corollary. Let T be a first-order theory, D be an ultrafilter on a set I, and
(A;)ier be a system of structures such that A; F T for each i € I. Then

HAZ-/D#T

iel

8.4.3 Corollary. Let A be a first-order structure and D be an ultrafilter on a set I.
Then the diagonal mapping a + @’ is an elementary embedding A —+ A!/D of the
structure A into its ultrapower A!/D.

Proof. Tt suffices to verify that for any formula ¢(z1,...,z,) and arbitrary elements
ai,...,a, € A, the condition A F ¢(ay,...,a,) implies that AI/D E ga(d?, . ,65).

Under this assumption, however, we have [p(a1,...,a,)] = I € D, so the desired
conclusion follows from Lo§” theorem.
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8.4.4 Exercise. Let A= (4;...) be a structure of infinite cardinality |A| = a, such
that a0 = « (e.g., this is the case of the power of the continuum o = 2%°¢). Let further
I be an infinite countable set (e.g., I = N) and D be a nonprincipal ultrafilter on I.
Prove that the ultrapower A’ / D is a proper elementary extension of the structure A
with the same cardinality ’AI/D| =q.

8.5 Nonstandard Analysis

The construction of ultrapowers makes it possible to extend the domain of real num-
bers into a numerical system that includes “infinitesimally small” and “infinitely
large” quantities and to use them in developing infinitesimal calculus, i.e., differ-
ential and integral calculus, in a form close to its historical origin, as conceived by its
founders, Isaac Newton and Gottfried Wilhelm Leibniz. The mathematical discipline
that, using methods of mathematical logic and model theory, studies various classical
mathematical structures through their elementary extensions, where they are enriched
with different types of ideal elements, is called nonstandard analysis. Its foundations
were laid in the 1960s by Abraham Robinson. “Nonstandard methods” are currently
used in various areas of mathematics, such as measure theory and probability, topol-
ogy, functional analysis, ergodic theory, dynamical systems, etc., so the significance
of nonstandard analysis extends far beyond the rehabilitation of the original infinites-
imal calculus. In this brief introduction, however, we will outline only a few of its
fundamental ideas related to the infinitesimal calculus of real functions of one real
variable.

For concreteness, let us choose the index set I to be the set of all positive integers,
ie, I = 1,2,3,...; however, any infinite set could serve this role. Further, let D
be any non-principal ultrafilter on the set I; this means that F(I) C D. For any
structure A of an arbitrary first-order language L, we denote its ultrapower A’ / D as
*A. Specifically, for any set A, we define *A = Al / D, and we identify each element
a € A with its image @ in the diagonal embedding A — *A.

The set *R = R’ / D is called the set of all hyperreal numbers. Similarly, one can de-
fine hypernatural, hyperinteger, hyperrational, and hypercomplex numbers. We agree
that L = (F, R, v) is a first-order language whose specific symbols include the usual
symbols for addition + and multiplication -, the constants 0 and 1, the ordering
relations < and <, as well as the standard symbols for all functions, operations, con-
stants, and relations commonly used in mathematical analysis, such as the absolute
value function |z|, the exponential function e”, sine sin x, cosine cos z, division opera-
tion z/y, exponentiation z¥, constants m, e, unary predicates Z(z) “to be an integer”,
Q(z) “to be a rational number”, R*(z) “to be a positive (real) number”, and so on.
Then, R denotes the L-structure with the underlying set R, where all specific symbols
of the language L are interpreted in the natural (i.e., standard) way. The ultrapower

*R=7R!/D

is called the nonstandard extension of the structure R. While the interpretations of
the specific symbols of the language L in the structure R will be denoted by the
corresponding symbol itself, the interpretation of a symbol s in the structure *R will
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be denoted by *s. When no confusion arises, we will omit this asterisk, especially for
symbols with established meanings, such as +, -, 0, 1, 7, e, |z|, sinz, cosz, <, etc.
For any function f: P — R that we intend to study, we assume that f and its domain
P C R “have names” expressed by specific symbols, or at least terms or formulas of
the language L. To such a function then corresponds a function *f: *P — *R that
satisfies the conditions P C *P C *R and *f(x) = f(z) for € P. Since R < *R, *f
has, in certain well-defined sense, “the same properties” as the original function f.

Restricting the structures R and *R to the language with specific symbols +, -, 0, 1,
and <, we obtain the ordered fields Ry = (R; +,-,0,1,<) and *Ro = (*R; +,+,0, 1, <),
where Ry < *Ry still holds. The ordered field *Rg, however, contains “infinitely
large” and “infinitesimally small” numbers (quantities). We say that a hyperreal
number x € *R is finitely large, or alternatively bounded or simply finite, if there
exists a positive real number r € R such that |z| < r. Otherwise, we say that z is
infinitely large, or alternatively unbounded or simply infinite. We say that a hyperreal
number x € *R is infinitesimally small, or simply infinitesimal, if for every positive
real number r € R, we have |z| < r. It is easy to see that the set

F'R = {z € "R: (Ir € R)(|z| < 1)}

of all finite hyperreal numbers forms a convez subring ¢ of the ordered field *Ry. The
set

IR ={z € "R: (Vr e RY)(jz] <7)}

of all infinitesimally small hyperreal numbers forms a convex ideal of the ordered ring
(F*Ra +, Oa 17 <)'

The reader should verify that for the sequence a = (1,2,3,...) € R!, i.e., a(i) =1
for i € I, we have aP € *R ~ F*R, which means that a” is a positive infinitely large
hyperreal number. On the other hand, for the sequence g = (1,1/2,1/3,...) € Rf,
ie., B(i) = 1/i for i € I, we have 0 # BT € I*R, meaning that AP is a positive
infinitesimally small hyperreal number. In general, a hyperreal number z is infinitely
large if and only if its reciprocal 1/z is infinitesimally small.

Since the set I*R of infinitesimally small numbers is also a subgroup of the abelian
group (*R;+,0), the relation

rry & x—yelR

defines an equivalence relation on the set *R, called the relation of infinitesimal near-
ness, or indiscernibility equivalence. The set

wa)=z+TR={y e "R:y~z}

of all hyperreal numbers infinitely close to the number (point) z € *R is called,
following Leibniz, the monad of the number (point) . Apparently, x(0) = I*R and
each monad u(x) is a convex subset of the set *R.

6 A subset X of a partially ordered set (A; <) is called convez if for all z,y, 2 € A, the condition
(z,z€ X Nz <y < z) implies y € X.
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For every finite hyperreal number x, there exists exactly one (standard) real number
r such that x = r; this real number is called the standard part or shadow of the
number z and is denoted as
r=str="u

For a reader with some knowledge of topology, we add that for € F*R determined by
a sequence £ € RY, ie., o = £P, the equality °z = r holds if and only if the sequence
& converges to the point r with respect to the ultrafilter D.” From this, it follows that
the convergence

lim £(i) =r

1— 00
in the “usual” sense (i.e., according to the Fréchet filter F(I)) is a sufficient (though
not necessary) condition for the equality °x = r.

From our considerations, it follows that the quotient set F*R/I*R = F*R /~ consists
of the monads p(x) of bounded hyperreal numbers = € F*R. By taking the quotient
of the ordered ring (F*R;+,-,0, 1, <) with respect to its convex ideal I*R, we again
obtain an ordered ring (F*R/I*R;+,-,0,1,<). Specifically, for the ordering in this
ring, the following holds:

wz) <uply) & (x <y Azy)
waz) <puly) & (z<yVaemy)

Moreover, by assigning p(x) — stz, a well-defined isomorphism of ordered rings is
established: (F*R/I*R;+,-,0,1,<) = (R;+,-,0,1,<). From this, it follows, among
other things, that (F*R/I*R;+,-,0,1, <) is an ordered field.

8.5.1 Exercise. Similarly, we can define the sets of all finite hyperrational numbers
F*Q and of all infinitely small hyperrational numbers I*Q, and form the quotient
ordered ring (F*Q/I*Q; +,-,0, 1, <). Consider which of the two possibilities

(F*Q/H*Qv +7 '707 17 <) = (Qa +a Yy 07 17 <)

or
(F*Q/H*Q7 +7 '707 1’ <) = (R7 +a y 07 17 <)

actually takes place, and explain why.

The fact that the ordered fields Ry = (R;+,+,0,1,<) and *Ry = (*R; +,-,0, 1, <)
are elementarily equivalent, which follows from the elementary inclusion Ry < *R,
merely means that Ry and *Rg share the same properties expressible in the lan-
guage of ordered fields. However, regarding other properties, they may differ signifi-
cantly. For example, in Ry, the least upper bound property holds, meaning that every
bounded set X C R has a supremum in R. On the other hand, the sets I*R C *R
and F*R C *R are both bounded in *R (the former by any positive number r € R,
the latter by any infinite positive number z € *R). However, it is easy to verify that

7 A sequence «: I — R converges to a real number a with respect to a filter D on the set I, if for
every real number ¢ > 0 there exists a set X € D such that |a(k) — a| < ¢ for every k € X.
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neither of them has a supremum in *R. The fact that the structure *Rg is an ele-
mentary extension of the structure R implies the existence of a supremum only for
all bounded sets of the form X = {z € *R: ¢(x,a1,...,a,)} where o(x,x1,...,2,)
is a formula in the language of ordered fields and aq,...,a, € *R. Consequently, we
see that the sets I*R, F*R cannot be expressed in this form. Similar considerations
apply to the richer language L and the L-structures R < *R.

The following three theorems, which we state without proofs, characterize three
fundamental concepts of mathematical analysis (continuity, differentiation, and def-
inite integration) using infinitesimal and infinitely large quantities. At the same
time, they can be understood as definitions of these concepts. However, in that
case, it would be appropriate to prove that the corresponding standard definitions
of these concepts are equivalent to them. We leave it to the reader’s personal judg-
ment whether they find the standard or nonstandard formulations more intuitively
appealing.

8.5.2 Theorem. Let P C R and f: P — R be any function named in the language L.

Then

(a) f is continuous at the point a € P if and only if for all x € *P, it holds that
v~ a = "f(x) = f(a);

(b) f is continuous on the set P if and only if for all a € P, x € *P, it holds that
z~a = "f(z) = f(a);

(¢) f is uniformly continuous on the set P if and only if for all x,y € *P, it holds
that
zry = "flz) = "f(y).

We recall that a point a € P of a set P C R is called its interior point if there
exists a positive number ¢ € R such that (a —e,a +¢) C P. It can be shown that
a € P is an interior point of this set if and only if u(a) C *P.

8.5.3 Theorem. Let P C R, f: P — R be any function named in the language
L, and a € P be an interior point of the set P. Then the function f has a finite
derivative at the point a if and only if there exists a real number r such that for every
infinitesimally small number d # 0, the following holds:

flatd) - fla)
d

=T

In such a case, we write

o) = S0 =y - (a2 = 1)

and this number is called the derivative of the function f at the point a.

The Riemann definite integral can be defined using “infinite integral sums” cor-
responding to infinitesimal partitions of a given interval. A rigorous introduction of
such sums would require additional finer considerations, which we will omit this time.
However, the fundamental ideas on which the following concepts and the associated
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construction are based are quite intuitive. It suffices to note that a set or a sequence
is called hyperfinite if it can be meaningfully assigned some hypernatural number
n € *N as the number of its elements or members. If n € *N (N, then this set or se-
quence is infinite in the standard sense. The numbers forming a hyperfinite sequence
(c1,...,¢n) € *R™ can also be summed, and their sum ) ., ¢, can be handled in a
well-defined sense just like a finite sum.

Let a < b be (standard) real numbers. A partition of the interval [a, b] is a hyperfi-
nite sequence (cg, ¢1,...,¢y,), wheren € *N, such thata = ¢ < ¢; < ... < ¢, =b. We
say that (co,c1,...,c,) is an infinitesimal partition of the interval [a,b] if cxp_1 = ¢
for every 1 < k < n. Clearly, if (¢g,c1,...,¢n) is an infinitesimal partition of the
interval [a, b], then n € *N N, meaning n is an infinitely large hypernatural number.
The integral sum corresponding to the partition (co,¢1,. .., ¢,) is defined as

> " f @) (e — cr-1)
k=1

where (z1,...,z,) is a hyperfinite sequence of selected points zy € [cx_1, cx] from the
subintervals [c,_1, cx] C [a, b].

8.5.4 Theorem. Let a < b be real numbers, and let f: [a,b] — R be any function
named in the language L. Then the function f is Riemann integrable on the interval
[a, ] if and only if there exists a real number S such that for all infinitesimal partitions
(co,¢1,---,Cn) of the interval [a,b] and chosen points xy € [ci_1,ck] for 1 < k < n,
the following holds:

> flaw) ok — 1) = S
k=1

n

In such a case, we write

/ab f@)de =5 = St<§*f(xk)(ck - Ck—1)>

and this number is called the definite integral of the function f on the interval [a,b].
Specifically, if n € *NN\ N, d = (b—a)/n = 0, and ¢, = a + kd for 0 < k < n, then
(coyc1,- .., Cn) is a uniform infinitesimal partition of the interval [a, b]. In this case, for
a Riemann integrable function f: [a,b] — R and any choice of points xy € [cx—1, k],
we have

/ fa)dr= 5= t(,; ) = -0t ,; o))

which means that the standard part of the arithmetic mean % >on_, *f(xk) represents
the average or the mean value of the function f on the interval [a, b].

Finally, let us note something that some attentive readers may have already noticed
on their own. The fact that we constructed the structure *R over the set of hyperreal
numbers *R as an ultrapower *R = R /D of the structure R over the set of real
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numbers R played no essential role in our considerations. The crucial aspect was only
that the structure *R is an elementary extension of the structure R, along with the
intuition and appealing transparency associated with the ideas of infinitesimally small
and infinitely large numbers. The ultrapower construction merely provided an initial
foundation by essentially “legalizing” them within the universe of sets, which we have
come to regard as the realm of the decisive part of modern mathematics.

8.6 The Compactness Theorem in the Language of Ultraproducts

Our original proof of the Compactness Theorem 4.9.1 was based on the Completeness
Theorem 4.8.6 and it was non-constructive in the sense that it provided no method
for constructing a model of a first-order theory T" from models of its finite subtheories.
The following theorem gives us some insight into such a construction. However, it is
important to realize that non-principal ultrafilters cannot be explicitly described, and
the axioms of set theory guarantee only their existence. Therefore, the “constructive-
ness” of the following theorem remains largely illusory.

8.6.1 Compactness Theorem. Let X be a set of sentences in the language L,
closed under finite conjunctions, and for each ¢ € X, let A, be a structure in the
language L such that A, E 0. Then there exists an ultrafilter D on the set X such

that
I1 AU/DIZ ¥

ceX

Proof. For each ¢ € X, we denote J, = {9 € ¥ : A, F o}. Clearly, the set
Jyy N-+- N J,, contains the formula o1 A -+ A, 0y, so {J, : 0 € X} is a centered
system of subsets of the set 2. Therefore, there exists an ultrafilter D on X' such that
Jo € D for each o € Y. We will prove that

[[4/Pro

0€X

for any o € X. It suffices to realize that
o) ={oeX: AyFo}=J,€D

The required conclusion follows from Lo$” theorem 8.4.1.

8.7 Elementary Equivalence and Ultraproducts

The just-proven version of the Compactness Theorem enables to characterize the re-
lationship of elementary equivalence of structures through the elementary embedding
of one of them into an ultrapower of the other.

8.7.1 Theorem. Let A, B be structures of the language L. Then A = B if and only if
there exists an ultrapower A’ / D of A and an elementary embedding h: B = Al / D.



162 8 ULTRAPRODUCTS AND AXIOMATIC CLASSES

Proof. Let A = B. Put ¥ = Th(Bg). Clearly, X is a set of sentences of the
language Lp closed under finite conjunctions. Any o € X has the form (b, ...,b,)
for an appropriate formula ¢(z1,...,z,) of the language L and by,...,b, € B. Then
BE ¢(by,...,b,), and since A = B, also

AE 3z, xn)e(x1,. .. 2,)

Let g,: B — A be a mapping such that for the structure A, = (A7 gg(b))beB of the
language Lp, we have

AFE @(gﬂ(bl)ﬂ s ago(bn))
i.e., A, E 0. By the Compactness Theorem 8.6.1, there exists an ultrafilter D on X

such that
IT A / DEX

oceX

Then, the restriction of this ultraproduct to the language L is the ultrapower A% / D,
and the mapping h: B — A*/D, given by h(b)(c) = g,(b) for b € B, 0 € X, is an
elementary embedding B —» A~ /D.

The reverse implication is trivial.

Note that using techniques beyond the scope of our course, one can prove a signif-
icantly stronger result.

8.7.2 Keisler-Shelah Theorem. Let A, B be first-order structures. Then A = B
if and only if there exist a set I and an ultrafilter D on I such that AI/D = BI/D.

8.8 Characterization of Axiomatic and
Finitely Axiomatizable Classes

We denote the class of all structures of the language L by Mod(L). If T is a theory
in the language L, then we denote the class of all its models by Mod(7'), that is,

Mod(T) = {A € Mod(L): AF T}

We say that a class K C Mod(L) of structures of the language L is an aziomatic
class, if there exists a theory T in the language L such that K = Mod(T). We say
that a class K of structures of the language L is finitely axiomatizable, if there exists
a finite theory in the language L such that K = Mod(T).

The theory of the class K C Mod(L) is defined as the set Th(K) of all sentences
of the language L satisfied in every structure A € K, i.e.,

Th(K) = {¢ € Form(L): ¢ is closed a (VA € K)(AF ¢)}

The following two theorems characterize axiomatic and finitely axiomatizable classes
in terms of their closure properties with respect to isomorphism, elementary equiva-
lence, elementary substructures, and ultraproducts.
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8.8.1 Theorem. Let K be an arbitrary class of structures in the language L. The
following conditions are equivalent:

(i) K is an axiomatic class.

(i1) K is closed under isomorphism, elementary substructures, and ultraproducts.
(iii) K is closed under elementary equivalence and ultraproducts.

Proof. (i) = (ii) is trivial, (ii) = (iii) follows from Theorem 8.7.1. It remains to
prove (iii) = (i).

Assume that K is closed under elementary equivalence and ultraproducts. Let
T = Th(K). Clearly, K C Mod(T). We prove the reverse inclusion. Let B €
Mod(T). Then X = Th(B) is a set of sentences in the language L that is closed
under finite conjunctions. Also, for every o € Y, there exists some A, € K such that
A, E 0. Otherwise, we would have —o € T, and thus B |= —o. By the Compactness
Theorem 8.6.1, there exists an ultrafilter D on the set X such that HUEZ AJ/D E X,
hence [] A, /D = B. Therefore, B € K.

8.8.2 Theorem. Let K be an arbitrary class of structures in the language L. The
following conditions are equivalent:
(i) K is a finitely axiomatizable class.

(ii) Both K and Mod(L) \ K are axiomatic classes.
(iii) K is an axiomatic class and the class Mod(L) \ K is closed under ultraproducts.

Proof.  (i)=(ii) is almost obvious. If K is a finitely axiomatizable class, then
there exists a closed L-formula o (the universal closure of the conjunction of all
axioms defining the class K) such that K = Mod(o). Then for the complement
K’ = Mod(L) \ K in the class of all L-structures, we have K’ = Mod(—¢), meaning
that K’ is also a finitely axiomatizable class.

As (ii) = (iii) is trivial, it remains to prove (iii) = (i). Let X' = Th(K). Clearly,
X is a set of sentences in the language L that is closed under finite conjunctions.
Since K is an axiomatic class, we have K = Mod(X). We show that there exists
some o € X such that K = Mod(o). Otherwise, for every o € X, there would exist
a structure A, € K’ such that A, F o. By the Compactness Theorem 8.6.1, there
exists an ultrafilier D on the set X such that [] . A, /D E X, ie., [[A,/D € K.
Since K’ is closed with respect to ultraproducts, we have also [ A / D € K’, which
is a contradiction.

8.8.3 Exercise. Let S, T be theories (whose axioms are closed formulas) in the
language L, and let J, K be classes of L-structures.
(a) Prove the following relations:

S CT = Mod(T) C Mod(S)T € Th(Mod T)
JCK = Th(K) C Th(J) K C Mod(ThK)

(b) Derive from (a) the equalities

Mod(Th(Mod T')) = Mod(T) Th(Mod(Th K)) = Th(K)
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(¢) Prove that the set Th(Mod T') consists precisely of all closed L-formulas ¢ such
that T F .

(d) Prove that Mod(ThK) is the smallest axiomatic class M C Mod(L) such that
KCM.

(e) Prove that the class Mod(ThK) consists precisely of all L-structures B that
are isomorphic to elementary substructures of ultraproducts of all possible systems
(A;)ier of structures A; € K.
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